Những câu hỏi liên quan
NM
Xem chi tiết
H24
20 tháng 7 2019 lúc 14:37

Ta có : \(Q=2x-2-3x^2=-\left(3x^2-2x+2\right)=-[3\left(x^2-\frac{2}{3}x+\frac{1}{9}\right)+\frac{17}{9}]\)

\(=-[3\left(x-\frac{1}{3}\right)^2+\frac{17}{9}]\)

Ta có : \(\left(x-\frac{1}{3}\right)^2\ge0=>-[3\left(x-\frac{1}{3}\right)^2+\frac{17}{9}]\ge0\)

Dấu bằng xảy ra khi \(x-\frac{1}{3}=0=>x=\frac{1}{3}\)

Vậy \(Q_{max}=\frac{17}{9}\)khi \(x=\frac{1}{3}\)

Bình luận (0)
HL
Xem chi tiết
H9
15 tháng 10 2023 lúc 11:01

1, a) 

Ta có:

\(x^2+2x+1=\left(x+1\right)^2\)

Thay x=99 vào ta có:

\(\left(99+1\right)^2=100^2=10000\)

b) Ta có:

\(x^3-3x^2+3x-1=\left(x-1\right)^3\)

Thay x=101 vào ta có:

\(\left(101-1\right)^3=100^3=1000000\)

Bình luận (0)
H24
Xem chi tiết
NT
7 tháng 9 2021 lúc 20:14

a, \(Q=-3x^2+2x-3=-3\left(x^2-2.\frac{1}{3}x+\frac{1}{9}-\frac{1}{9}\right)-3\)

\(=-3\left(x-\frac{1}{3}\right)^2-\frac{8}{3}\le-\frac{8}{3}\)Dấu ''='' xảy ra khi x = 1/3

Vậy GT;N của Q bằng -8/3 tại x = 1/3 

Bình luận (0)
 Khách vãng lai đã xóa
CB
8 tháng 9 2021 lúc 16:29

`Q = 2x -3 - 3x^2`

`->Q = -3x^2 +2x-3`

`->Q = -3 (x^2 - 2/3x + 1)`

`->Q = -3 (x^2 - 2 . x . 1/3 + 1/9 - 1/9+1)`

`->Q = -3 (x - 1/3)^2 -8/3`

Vì `(x-1/3)^2` lớn hơn hoặc bằng `0` với mọi `x`

`-> -3 (x-1/3)^2 -8/3` nhỏ hơn hoặc bằng `-8/3` với mọi `x`

`-> Q` nhỏ hơn hoặc bằng `-8/3` với mọi `x`

Dấu "`=`" xảy ra khi :

`<=> (x-1/3)^2=0`

`<=>x-1/3=0`

`<=>x=1/3`

Vậy `max Q=-8/3 <=> x=1/3`

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
DH
27 tháng 11 2017 lúc 13:43

GTNN :\(A=\frac{\left(2x^2+2\right)+\left(x^2-2x+1\right)}{x^2+1}=2+\frac{\left(x-1\right)^2}{x^2+1}\ge2\forall x\) có GTNN là 2

GTLN : \(A=\frac{\left(4x^2+4\right)-\left(x^2+2x+1\right)}{x^2+1}=4-\frac{\left(x+1\right)^2}{x^2+1}\le4\forall x\) có GTLN là 4

Bình luận (0)
VN
Xem chi tiết
ND
2 tháng 8 2016 lúc 10:02

cho hỏi gtln là gì

Bình luận (0)
OP
2 tháng 8 2016 lúc 10:08

\(2x-3x^2+4\)

\(=-3\left(x^2-\frac{3}{2}x-\frac{4}{3}\right)\)

\(=-3\left(x^2-2.x.\frac{3}{4}+\frac{9}{16}-\frac{91}{48}\right)\)

\(=\frac{91}{16}-3\left(x^2-\frac{3}{4}\right)^2\le\frac{91}{16}\)

Max = \(\frac{91}{16}\Leftrightarrow x^2-\frac{3}{4}=0\Rightarrow x^2=\frac{3}{4}\Rightarrow x=\sqrt{\frac{3}{4}}\)

Bình luận (0)
DH
Xem chi tiết
EC
1 tháng 1 2020 lúc 11:09

Ta có: A = \(\frac{3x^2-2x+3}{x^2+1}=\frac{3\left(x^2+1\right)-2x}{x^2+1}\)

\(=3+\frac{-2x}{x^2+1}=3+\frac{x^2-2x+1-\left(x^2+1\right)}{x^2+1}\)

\(=3+\frac{\left(x-1\right)^2}{x^2+1}-1\)

\(=\frac{\left(x-1\right)^2}{x^2+1}+2\ge2\forall x\)

Dấu "=" xảy ra <=> x - 1 = 0 <=> x = 1

Vậy MinA = 2 khi x = 1

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
NM
11 tháng 4 2018 lúc 19:54
a,(3x-2):4>=(3x+3):6 <=>(18x-12):24>=(12x+12):24 <=>18x-12>=12x+12 <=>6x>=24 <=> 6x:6>=24:6 <=> X>=4 Vậy tập n là {x/x>=4}
Bình luận (0)
HH
5 tháng 6 2020 lúc 23:01

a) Để giá trị biểu thức 5 – 2x là số dương

<=> 5 – 2x > 0

<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )

\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )

Vậy : \(x< \frac{5}{2}\)

b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:

x + 3 < 4x – 5

<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )

<=> -3x < -8

\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).

Vậy : \(x>\frac{8}{3}\)

c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:

2x + 1 ≥ x + 3

<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).

<=> x ≥ 2.

Vậy x ≥ 2.

d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:

x2 + 1 ≤ (x – 2)2

<=> x2 + 1 ≤ x2 – 4x + 4

<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).

<=> 4x ≤ 3

 \(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )

Vậy : \(x\le\frac{3}{4}\)

Bình luận (0)
 Khách vãng lai đã xóa
LG
Xem chi tiết
NN
Xem chi tiết
H24
4 tháng 3 2022 lúc 16:11

\(E=\left(2x-5\right)^{10}-12\ge-12\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{5}{2}\)

Vậy \(E_{min}=-12\Leftrightarrow x=\dfrac{5}{2}\)

\(F=\left(x+5\right)^8+\left|x+5\right|+22\ge22\)

Dấu "=" xảy ra \(\Leftrightarrow x=-5\)

Vậy \(F_{min}=22\Leftrightarrow x=-5\)

\(G=17-\left|3x-2\right|\)

Dấu "=" xảy ra \(x=\dfrac{2}{3}\)

Vậy ​\(G_{max}=17\Leftrightarrow x=\dfrac{2}{3}\)

\(K=17-\left|3x-2\right|-\left(2-3x\right)^{2020}\le17\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{2}{3}\)

Vậy \(K_{max}=17\Leftrightarrow x=\dfrac{2}{3}\)

Bình luận (0)
TL
Xem chi tiết
NT
3 tháng 12 2021 lúc 14:01

c: \(-x^2+2x-2=-\left(x-1\right)^2-1\le-1\forall x\)

\(\Leftrightarrow V\ge-1\forall x\)

Dấu '=' xảy ra khi x=1

Bình luận (0)