Tìm số nguyên tố p để :
a) p+8 ; p+4 đều là số nguyên tố
b) p+14 ; p+94 đều là số nguyên tố
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm tất cả các số nguyên tố P để a = P^2+8 là số nguyên tố
p là số nguyên tố
xét p=2 loại tự làm
xét p=3 chọn tự làm
xét p=3k+1 hoặc p= 3k+2
p=3k+1=> p^2+8= (3k+1)^2+8= 9k^2+6k+9 chia hết cho 3
p=3k+2=> p^2+8= (3k+2)^2+8= 9k^2+12k+12 chia hết cho 3
nên từ đó suy ra p=3 là thoả đề
Bài 1. Tìm số tự nhiên a nhỏ nhất để a : 7 dư 4; a : 9 dư 5 và a : 15 dư 8.
Bài 2. a) Tìm số tự nhiên n để 16 – 3n là ước của 2n + 1.
b) Tìm số tự nhiên n để n2 + 6n là số nguyên tố.
Bài 3. a) Tìm số nguyên tố p sao cho p + 2; p + 6; p + 8; p + 12; p + 14 cũng là số nguyên tố
b) Tìm số tự nhiên n để các số sau nguyên tố cùng nhau: 4n – 3 và 6n + 1
Tìm tất cả các số nguyên tố P để a=P^2 +8 là số nguyên tố
(+) Với p = 2
=> a = 22 + 8 = 14 ( hợp số )
(+) Với p = 3
=> a = 32+8 = 17 ( số nguên tố )
(+) Với p > 3
Vì p nguyên tố
=> p = 3k+1 ; p = 3k + 2\(\left(k\in N\right)\)
Mặt khác : p2 là số chính phương . Mà p không chia hết cho 3
=> p2 chia 3 dư 1
=> p2=3m+1\(\left(m\in N\right)\)
=> p2+8=3m+1+8=3m+9 ( hợp số )
Vậy p = 3
Ta có:
Gía trị của P | Gía trị của a khi thay P (a= P2+8) | Kết quả nhận/loại |
2 | 12 | Hợp số-> Loại |
3 | 17 | Số nguyên tố-> Nhận |
5 | 33 | Hợp số-> Loại |
7 | 57 | Hợp số -> Loại |
11 | 129 | Hợp số-> Loại |
Cứ thử như thế cho đến mãi ta mới chỉ nhận được một giá trị : P=3
=> Vậy: P=3
tìm p là số nguyên tố để
a) p + 4, p+8 là số nguyên tố
b)p + 6 là sô nguyên tố
a) nếu p=2 thì p+4=6 ,p+8=10 ( là hợp số)=> ko thỏa mãn
nếu p=3 thì p+4=7,p+8=11 (là số nguyên tố) => thỏa mãn
Nếu p>3.Do p là số nguyên tố nên p có dạng 3k+1,4k+2
Nếu P=3k+1=>p+8=3k+9=3x(k+3) là hợp mãn số
nếu P=3k+2=>p+6=4k+8=4x(k+2) là hợp số
Vậy chỉ có p=3 thỏa
Tìm số nguyên tố p để :
a, p + 2 , p + 4 là số nguyên tố
b, p + 2 , p + 4 , p + 8 là số nguyên tố
a, p=3
b, p=3
Mik chắc chắn 100% luôn
Mà bài này có trong violympic hả
Chúc bạn học giỏi nha!!!
K cho mik với nhé kirigaya kazuto
a) Do p + 2 và p + 4 là 2 số nguyên tố > 2 => p + 2 và p + 4 là số lẻ => p lẻ
+ Với p = 3 thì p + 2 = 3 + 2 = 5; p + 4 = 3 + 4 = 7, đều là số nguyên tố, chọn
+ Với p > 3, do p nguyên tố => p = 3k + 1 hoặc p = 3k + 2 (k thuộc N*)
Nếu p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3.(k + 1) chia hết cho 3
Mà 1 < 3 < p + 2 => p + 2 là hợp số, loại
Nếu p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3.(k + 2) chia hết cho 3
Mà 1 < 3 < p + 4 => p + 4 là hợp số, loại
Vậy p = 3
b) Lm tương tự câu a
1. Trong các số sau số nào là hợp số, số nào là số nguyên tố
36; 37; 91; 92; 97; 2022; 5757
2. Tìm a để
a) 17𝑎̅ là hợp số; 23𝑎̅ là số nguyên tố
3. Các số sau là số nguyên tố hay hợp số
a) a = 1.3.5.7 + 20
b) 147.247.347 -13
4. Tìm số ước của số 240
5. Tìm số nguyên tố p để 4p = 11 là số nguyên tố nhỏ hơn 30
6. Tìm số nguyên tố p sao cho p + 8 và p + 16 là số nguyên tố
Tìm số nguyên tố P để
a, P+2 và P + 4 là số nguyên tố
b, P+2, P+8, P+14, P+6 là số nguyên tố
tìm số nguyên tố p để
a, 5 . p + 3 là số nguyên tố
b, p + 2 ; p + 6 ; p + 8 là các số nguyên tố (p nhỏ hơn 7 )
Tìm số nguyên tố P để P2+8 là số nguyên tố
5 , Tìm P nguyên tố để:
a, ( P+10) và P+14 cũng là số nguyên tố
b, P+2;P+6 và P+8 cũng là số nguyên tố
a)
+) Nếu p = 2 thì p + 10 = 2 + 10 = 12 → Hợp số ( loại)
+) Nếu p = 3 thì p + 10 = 3 + 10 = 13 ; p + 14 = 17 → Số nguyên tố ( thỏa mãn )
+) Nếu p > 3 thì p có dạng : 3k + 1 hoặc 3k + 2
- Với p = 3k + 1 thì p + 14 = 3k + 1+ 14 = 3k + 15 chia hết cho 3 → Hợp số ( loại )
- Với p = 3k + 2 thì p + 10 = 3k + 2 +10 = 3k + 12 chia hết cho 3 → Hợp số (loại)
Vậy p = 3
a)
- Nếu p = 2 => p + 10 = 2 + 10 = 12 là hợp số
=> p = 2 (loại)
- Nếu p = 3 => p + 10 = 3 + 10 = 13 là số nguyên tố
p + 14 = 3 + 14 = 17 là số nguyên tố
- Nếu p > 3 ; p là số nguyên tố thì p có dạng 3k + 1 và 3k + 2
+ p = 3k + 1 => p + 14 = 3k + 1 + 14 = 3k + 15 \(⋮\)3 là hợp số
=> p = 3k + 1 (loại)
+ p = 3k + 2 => p + 10 = 3k + 2 + 10 = 3k + 12 \(⋮\)3 là hợp số
=> p = 3k + 2 (loại)
Vập p = 3
b)
- Nếu p = 2 => p + 2 = 2 + 2 = 4 là hợp số
=> p = 2 (loại)
- Nếu p = 3 => p + 6 = 3 + 6 = 9 là hợp số
=> p = 3 (loại)
- Nếu p = 5 => p + 2 = 5 + 2 = 7 là số nguyên tố
p + 6 = 5 + 6 =11 là số nguyên tố
p + 8 = 5 + 8 = 13 là số nguyên tố
=> p = 5 (chọn)
- Nếu p > 5; p là số nguyên tố thì p có dạng là 5k - 1
p = 5k - 1 => p + 6 = 5k - 1 + 6 = 5k + 5 \(⋮\)5 là hợp số
=> p = 5k - 1 (loại)
Vập p = 5
Mình không biết phần b mình làm đúng không nữa!
Chúc bạn học tốt!