Chứng minh rằng:
\(\left(n+2\right)^2-\left(n+2\right)^2\) chia hết cho 8 với mọi n thuộc Z
\(c,31,8^2-2.31,8.21,8+21,8^2\)
Bài 12 : chứng minh rằng với mọi số nguyên n thì
a, \(\left(n+2\right)^2-\left(n-2\right)^2\) chia hết cho 8
b, \(\left(n+7\right)^2-\left(n-5\right)^2\) chia hết cho 24
\(c,=\left(31,8-21,8\right)^2=10^2=100\\ 12,\\ a,\left(n+2\right)^2-\left(n-2\right)^2\\ =\left(n+2-n+2\right)\left(n+2+n-2\right)\\ =4\cdot2n=8n⋮8\\ b,\left(n+7\right)^2-\left(n-5\right)^2\\ =\left(n+7-n+5\right)\left(n+7+n-5\right)\\ =12\left(2n+2\right)=24\left(n+1\right)⋮24\)
Chứng minh rằng với mọi số nguyên n , thì :
\(\left(n+2\right)^2-\left(n-2\right)^2\) chia hết cho 8
(n+2)2-(n-2)2
=(n+2+n-2)(n+2-n+2)
=2n.4
=8n ⋮ 8
=> Đpcm
Có: \(\left(n+2\right)^2-\left(n-2\right)^2\)
\(=\left(n+2+n-2\right)\left(n+2-n+2\right)\)
\(=2n.4\)
\(=8n⋮8n\) \(\left(8⋮8\right)\)
Vậy \(\left(n+2\right)^2-\left(n-2\right)^2⋮8\) (ĐPCM)
Chứng minh rằng với mọi n nguyên thì
\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\) chia hết cho 5
nhanh nhanh hộ mk với
\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)
\(=2n^2-n^3-6n+3n^2+2-n+n^3+12n+8\)
\(=\left(2n^2+3n^2\right)+\left(n^3-n^3\right)+\left(12n-6n-n\right)+\left(8+2\right)\)
\(=5n^2+5n+10\)
\(=5\left(n^2+n+2\right)⋮5\forall n\in Z\left(đpcm\right)\)
chứng minh rằng :
\(A=n\times\left(n^2+1\right)\times\left(n^2+4\right)\)chia hết cho 10 với mọi n thuộc N
chứng minh rằng
a) \(43^2+43\cdot17\) chia hết cho 60
b) \(n^2\left(n+1\right)+2n\left(n+1\right)\) luôn chia hết cho 6 với mọi \(n\in z\)
c) \(25n\left(n-1\right)-50\left(n-1\right)\) luôn chia hết cho 150 với mọi n là số nguyên
Nè, bài này mình chỉ làm được hai câu a,b thoi nha
a) Chứng minh: 432 + 43.17 chia hết cho 16
432 + 43.17 = 43.(43 + 17) = 43.60 ⋮ 60
b) Chứng minh: n2.(n + 1) + 2n(x + 1) chia hết cho 6 với mọi n ∈ Z
n2(n + 1) + 2n(n + 1) = (n2 + 2n)(n + 1) = n(n + 1)(n + 2)
mà tích ba số tự nhiên liên tiếp chia hết cho 6 (một số chia hết cho 2, một số chia hết cho 3, UWCLL (2;3) = 1)
⇒n2 .(n + 1) + 2n(n + 1) + n(n + 1)(n + 2) ⋮ 6
Chứng minh rằng với mọi số tự nhiên n, \(\left(2^{3^{^n}}+1\right)⋮\left(3^{n+1}\right)\)nhưng không chia hết cho \(3^{n+2}\)
Do 2 + 1 chia hết cho 3 nên theo bổ đề LTE ta có \(v_3\left(2^{3^n}+1\right)=v_3\left(2+1\right)+v_3\left(3^n\right)=n+1\).
Do đó \(2^{3^n}+1⋮3^{n+1}\) nhưng không chia hết cho \(3^{n+2}\).
Chứng minh rằng tích \(\left(a+1\right)\times\left(3\times a+2\right)\)) luôn chia hết cho 2 với mọi a thuộc N
Bài 1 : Chứng minh rằng \(\left(2n+3\right)^2-\left(2n-1\right)^2\) chia hết cho 8 với n thuộc Z
\(\left(2n+3\right)^2-\left(2n-1\right)^2=4n^2+12n+9-4n^2+4n-1=16n+8=8\left(2n+1\right)⋮8\)
\(\left(2n+3\right)^2-\left(2n-1\right)^2\)
\(=\left(2n+3-2n+1\right)\left(2n+3+2n-1\right)\)
\(=4\left(4n-2\right)\)
\(=8\left(2x-1\right)\) Vì \(8⋮8\)
\(\Rightarrow8\left(2n-1\right)⋮(ĐPCM)\)
Chứng minh rằng: \(\left(3^{n+2}-2^{n+4}+3^n+2^n\right)\)chia hết cho 30 ( với mọi n thuộc N*)
Có:\(\left(3^{n+2}-2^{n+4}+3^n+2^n\right)=\left(3^n.3^2-2^n.2^{^4}+3^n+2^n\right)=3^n\left(3^2+1\right)-2^n.\left(2^4-1\right)=3^n.10-2^n.15\)Vì 30 chia hết cho 10 nên \(3^n.10\) cũng chia hết cho 10
Vì 30 chia hết cho 15 nên \(2^n.15\) cũng chia hết cho 15
Từ 2 điều nêu trên ta suy ra: \(\left(3^n.10-2^n.30\right)\) chia hết cho 30
Vậy: \(\left(3^{n+2}-2^{n+4}+3^n+2^n\right)\)chia hết cho 30 (ĐPCM)