Những câu hỏi liên quan
LD
Xem chi tiết
NM
11 tháng 10 2021 lúc 15:53

\(c,=\left(31,8-21,8\right)^2=10^2=100\\ 12,\\ a,\left(n+2\right)^2-\left(n-2\right)^2\\ =\left(n+2-n+2\right)\left(n+2+n-2\right)\\ =4\cdot2n=8n⋮8\\ b,\left(n+7\right)^2-\left(n-5\right)^2\\ =\left(n+7-n+5\right)\left(n+7+n-5\right)\\ =12\left(2n+2\right)=24\left(n+1\right)⋮24\)

Bình luận (0)
NV
22 tháng 10 2021 lúc 13:50

tui chiuj

Bình luận (0)
 Khách vãng lai đã xóa
ML
Xem chi tiết
HH
21 tháng 7 2018 lúc 20:36

(n+2)2-(n-2)2

=(n+2+n-2)(n+2-n+2)

=2n.4

=8n ⋮ 8

=> Đpcm

Bình luận (0)
MV
21 tháng 7 2018 lúc 20:44

Có: \(\left(n+2\right)^2-\left(n-2\right)^2\)

\(=\left(n+2+n-2\right)\left(n+2-n+2\right)\)

\(=2n.4\)

\(=8n⋮8n\) \(\left(8⋮8\right)\)

Vậy \(\left(n+2\right)^2-\left(n-2\right)^2⋮8\) (ĐPCM)

Bình luận (0)
HD
Xem chi tiết
KB
19 tháng 9 2018 lúc 22:05

\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)

\(=2n^2-n^3-6n+3n^2+2-n+n^3+12n+8\)

\(=\left(2n^2+3n^2\right)+\left(n^3-n^3\right)+\left(12n-6n-n\right)+\left(8+2\right)\)

\(=5n^2+5n+10\)

\(=5\left(n^2+n+2\right)⋮5\forall n\in Z\left(đpcm\right)\)

Bình luận (0)
NH
Xem chi tiết
H24
Xem chi tiết
LK
8 tháng 8 2018 lúc 11:57

Nè, bài này mình chỉ làm được hai câu a,b thoi nha

a) Chứng minh: 432 + 43.17 chia hết cho 16

432 + 43.17 = 43.(43 + 17) = 43.60 ⋮ 60

b) Chứng minh: n2.(n + 1) + 2n(x + 1) chia hết cho 6 với mọi n ∈ Z

n2(n + 1) + 2n(n + 1) = (n2 + 2n)(n + 1) = n(n + 1)(n + 2)

mà tích ba số tự nhiên liên tiếp chia hết cho 6 (một số chia hết cho 2, một số chia hết cho 3, UWCLL (2;3) = 1)

⇒n2 .(n + 1) + 2n(n + 1) + n(n + 1)(n + 2) ⋮ 6

Bình luận (0)
LH
Xem chi tiết
TH
11 tháng 4 2021 lúc 19:34

Do 2 + 1 chia hết cho 3 nên theo bổ đề LTE ta có \(v_3\left(2^{3^n}+1\right)=v_3\left(2+1\right)+v_3\left(3^n\right)=n+1\).

Do đó \(2^{3^n}+1⋮3^{n+1}\) nhưng không chia hết cho \(3^{n+2}\).

Bình luận (0)
NP
Xem chi tiết
KD
Xem chi tiết
H24
19 tháng 7 2019 lúc 8:28

\(\left(2n+3\right)^2-\left(2n-1\right)^2=4n^2+12n+9-4n^2+4n-1=16n+8=8\left(2n+1\right)⋮8\)

Bình luận (0)

\(\left(2n+3\right)^2-\left(2n-1\right)^2\)

\(=\left(2n+3-2n+1\right)\left(2n+3+2n-1\right)\)

\(=4\left(4n-2\right)\)

\(=8\left(2x-1\right)\) Vì \(8⋮8\)

\(\Rightarrow8\left(2n-1\right)⋮(ĐPCM)\)

Bình luận (0)
HH
Xem chi tiết
HT
26 tháng 2 2016 lúc 13:58

Có:\(\left(3^{n+2}-2^{n+4}+3^n+2^n\right)=\left(3^n.3^2-2^n.2^{^4}+3^n+2^n\right)=3^n\left(3^2+1\right)-2^n.\left(2^4-1\right)=3^n.10-2^n.15\)Vì 30 chia hết cho 10 nên \(3^n.10\) cũng chia hết cho 10      

Vì 30 chia hết cho 15 nên \(2^n.15\) cũng chia hết cho 15      

Từ 2 điều nêu trên ta suy ra:  \(\left(3^n.10-2^n.30\right)\)  chia hết cho 30

Vậy: \(\left(3^{n+2}-2^{n+4}+3^n+2^n\right)\)chia hết cho 30 (ĐPCM)

Bình luận (0)