rút gọn
B = (a + 2)(a -2)(a^2 + 2a +4)(a^2 -2a + 4)
Rút gọn biểu thức M = \(a+\dfrac{2a+b}{2-b}+\dfrac{2a-b}{2+b}+\dfrac{4a}{b^2-4}\) với \(b=\dfrac{a}{a+1}\)
\(M=a+\dfrac{4a+2ab+2b+b^2+4a-2ab-2b+b^2-4a}{\left(2-b\right)\left(2+b\right)}\\ M=a+\dfrac{4a+2b^2}{\left(2-b\right)\left(2+b\right)}=\dfrac{4a-ab^2+4a+2b^2}{\left(2-b\right)\left(2+b\right)}\\ M=\dfrac{8a-ab^2+2b^2}{4-b^2}\)
Ta có \(8a-b^2\left(a-2\right)=8a-\dfrac{a^2\left(a-2\right)}{\left(a+1\right)^2}=\dfrac{8a^3+16a^2+8a-a^3+2a^2}{\left(a+1\right)^2}=\dfrac{7a^3+18a^2+8a}{\left(a+1\right)^2}\)
\(4-b^2=4-\dfrac{a^2}{\left(a+1\right)^2}=\dfrac{4a^2+8a+4-a^2}{\left(a+1\right)^2}=\dfrac{3a^2+8a+4}{\left(a+1\right)^2}\)
\(\Leftrightarrow M=\dfrac{7a^3+18a^2+8a}{3a^2+8a+4}=\dfrac{a\left(7a+4\right)\left(a+2\right)}{\left(3a+2\right)\left(a+2\right)}=\dfrac{a\left(7a+4\right)}{3a+2}\)
Cho a > 0 và a ≠ 4 . Rút gọn biểu thức T = a − 2 a + 2 − a + 2 a − 2 . a − 4 a
Với a > 0 và a ≠ 4 , ta có
T
=
a
−
2
a
+
2
−
a
+
2
a
−
2
.
a
−
4
a
=
a
−
2
2
−
a
+
2
2
a
−
2
.
a
+
2
.
a
−
4
a
=
a
−
4
a
+
4
−
a
−
4
a
−
4
a
−
4
.
a
−
4
a
=
−
8
a
a
=
−
8
cho biểu thức P= (a^4+a)/(a^-a+1) + (2a^2-a)/a - (2a^2-2)/(a+1). Rút gọn
Rút gọn biểu thức sau:
C=4+2a+a^2)(4-a^2)(4-2a+a^2)
Cảm ơn mọi người trước ạ
Rút gọn:
a) A=(4-5x)2-(3+5x)2
b) B=(3x-1)(1+3x)-(3x+1)2
c) C=(2x+5)3-(2x-5)3-(120x2+49)
d) D=(2a-b+2)3-6(2a-b+2)2+12(2a-b+2)-8-(2a-b)3
a) A=(4-5x)2-(3+5x)2=(4-5x-3-5x)(4-5x+3+5x)=(-25x+1)1=-25x+1
B=(3x-1)(1+3x)-(3x+1)2=9x2-1-(3x+1)2=9x2-1-(9x2+6x+1)=9x2-1-9x2-6x-1=-6x-2=-2(3x+1)
rút gọn : a) 5.(2x-1)^2+4(x-1)(x+3)-2(5-3x)^2
b) (2a^2+2a+1)(2a^2-2a+1)=(2a^2+1)^2
1. Rút gọn: (4 + 2a + a2).(4 - a2).(4 - 2a + a2)
Ai làm đúng và nhanh nhất mình sẽ tick.
Rút gọn biểu thức B = ( 2 a – 3 ) ( a + 1 ) – ( a – 4 ) 2 – a ( a + 7 ) ta được
A. 0
B. 1
C. 19
D. – 19
Ta có
B = 2 a − 3 a + 1 − a − 4 2 − a a + 7 = 2 a 2 + 2 a – 3 a – 3 – ( a 2 – 8 a + 16 ) – ( a 2 + 7 a ) = 2 a 2 + 2 a – 3 a – 3 – a 2 + 8 a – 16 – a 2 – 7 a = - 19
Đáp án cần chọn là: D
rút gọn: a^4-3a^2+1/a^4-a^2-2a-1
Rút gọn các biểu thức sau:
\(A=\dfrac{a^2-1}{3}\sqrt{\dfrac{9}{\left(1-a\right)^2}}\) với a < 1
\(B=\sqrt{\left(3a-5\right)^2}-2a+4\) với a < \(\dfrac{1}{2}\)
\(C=4a-3-\sqrt{\left(2a-1\right)^2}\) với a < 2
\(D=\dfrac{a-2}{4}\sqrt{\dfrac{16a^4}{\left(a-2\right)^2}}\) với a < 2
a) Ta có: \(A=\dfrac{a^2-1}{3}\cdot\sqrt{\dfrac{9}{\left(1-a\right)^2}}\)
\(=\dfrac{\left(a+1\right)\cdot\left(a-1\right)}{3}\cdot\dfrac{3}{\left|1-a\right|}\)
\(=\dfrac{\left(a+1\right)\left(a-1\right)}{1-a}\)
=-a-1
b) Ta có: \(B=\sqrt{\left(3a-5\right)^2}-2a+4\)
\(=\left|3a-5\right|-2a+4\)
\(=5-3a-2a+4\)
=9-5a
c) Ta có: \(C=4a-3-\sqrt{\left(2a-1\right)^2}\)
\(=4a-3-\left|2a-1\right|\)
\(=4a-3-2a+1\)
\(=2a-2\)
d) Ta có: \(D=\dfrac{a-2}{4}\cdot\sqrt{\dfrac{16a^4}{\left(a-2\right)^2}}\)
\(=\dfrac{a-2}{4}\cdot\dfrac{4a^2}{\left|a-2\right|}\)
\(=\dfrac{a^2\left(a-2\right)}{-\left(a-2\right)}\)
\(=-a^2\)