Cho tam giác ABC có BC = 12cm. Gọi M,N lần lượt là trung điểm của AB, AC . Tính MN
Cho tam giác ABC , có BC = 12cm . Gọi M , N lần lượt là trung điểm của các cạnh AB , AC. Ta có : *
A MN = 7cm
B MN = 6cm
C MN = 5cm
D MN = 3cm
cho tam giác ABC , gọi M,N,P lần lượt là trung điểm của AB, BC AC
a, biết AC =12cm .Tính MN
b, chứng minh tứ giác AMNP , BMPN là hình hành
c, tam giác ABC có điều kiện gì để AMNP là hình vuông
giúp em vs
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)
\(\Leftrightarrow MN=\dfrac{12}{2}=6\left(cm\right)\)
b: Ta có: MN//AC và \(MN=\dfrac{AC}{2}\)
mà P\(\in\)AC và \(AP=\dfrac{AC}{2}\)(P là trung điểm của AC
nên MN//AP và MN=AP
Xét ΔABC có
M là trung điểm của AB
P là trung điểm của AC
Do đó: MP là đường trung bình của ΔABC
Suy ra: MP//BC và \(MP=\dfrac{BC}{2}\)
mà N\(\in\)BC và \(BM=\dfrac{BC}{2}\)
nên MP//BN và MP=BN
Xét tứ giác AMNP có
MN//AP
MN=AP
Do đó: AMNP là hình bình hành
Xét tứ giác BMPN có
MP//BN
MP=BN
Do đó: BMPN là hình bình hành
c) Hình bình hành AMNP trở thành hình vuông khi \(\left\{{}\begin{matrix}\widehat{MAP}=90^0\\AM=AP\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\widehat{BAC}=90^0\\AB=AC\end{matrix}\right.\)
Giải giúp mik vs ạ
Thank you ♥️
Cho tam giác ABC có AB = 12cm, AC = 16 cm, BC = 20 cm. 1. Tam giác ABC là tam giác gì? 2. Lấy M, N lần lượt trên AB, AC sao cho AM = 3cm, AN = 4cm. CMR: MN // BC 3. Gọi I là trung điểm BC. G là giao điểm của AI và MN. CMR: G là trung điểm MN
Cho tam giác ABC vuông tại A, biết AB=12cm, AC=16cm. Gọi M,M lần lượt là trung điểm của AB,AC a) Tính độ dài BC, MN b) Vẽ trung tuyến AI của tam giác ABC (I thuộc BC). Chứng minh tứ giác MNCI là hình bình hành c) Gọi D là giao điểm đối xứng của A qua I. Chứng minh tứ giac ABDC là hình chữ nhật d) Gọi K là giao điểm DB và NM. Chứng minh KA=DN
Cho tam giác ABC có BC = 16 cm. Gọi D và E lần lượt là trung điểm của AB và AC. Gọi M và N lần lượt là trung điểm của BD và EC. Tính MN?
A. 9cm
B. 8cm
C. 10cm
D. 12cm
* Xét tam giác ABC có D và E lần lượt là trung điểm của AB và AC nên DE là đường trung bình của tam giác.
Suy ra: DE// BC và
* Xét tứ giác DECB có DE // BC nên DECB là hình thang.
Lại có: M và N lần lượt là trung điểm của BD và EC nên MN là đường trung bình của hình thang .
Chọn đáp án D
Cho tam giác ABC có AB = 12cm; AC = 16cm; BC = 20cm. Gọi M; N; P lần lượt là trung điểm AB, AC, BC. Trên MP, AN đặt E; F sao cho ME = NF. CMR: EF; MN; AP đồng quy
Cho tam giác ABC vuông tại A,AB=12cm,BC=13cm. Gọi M, N lần lượt là trung điểm của AB và BC
a) Chứng minh MN là đường trung bình của tam giác. Từ đó chứng minh MN vuông với AB
b) Tính độ dài MN
a) Xét tam giác ABC có:
M là trung điểm AB(gt)
N là trung điểm BC(gt)
=> MN là đường trung bình
=> MN//AC
Mà AC⊥AB(tam giác ABC vuông tại A)
=> MN⊥AB(từ vuông góc đến song song)
b) Xét tam giác ABC vuông tại A:
\(BC^2=AB^2+AC^2\left(pytago\right)\)
\(\Rightarrow AC^2=BC^2-AB^2=13^2-12^2=25\Rightarrow AC=5\left(cm\right)\)
Ta có: MN là đường trung bình tam giác ABC
\(\Rightarrow MN=\dfrac{1}{2}AC=\dfrac{1}{2}.5=2,5\left(cm\right)\)
Cho tam giác ABC có BC=18cm, Gọi D, E lần lượt là trung điểm của AB và AC; M, N lần lượt là trung điểm của BD và CE. Tính MN?
D và E là trung điểm của AB và AC => DE là đường trung bình của tam giác ABC
=> DE//BC và DE=1/2 BC = 9cm
Tứ giác DECB có DE // BC => Hình thang DECB đáy DE, CB
Lại có M, N là trung điểm BD và CE=> MN là đường trung bình của hình thang DECB
=> MN = 1/2 ( DE + BC) = 1/2 (9+18) = 13,5 (cm)
Vậy....................................
________________________JK~ Liên Quân Group ________________________
Cho tam giác ABC có AB = 12cm; AC = 16cm; BC = 20cm. Gọi M; N; P lần lượt là trung điểm AB, AC, BC.Trên MP, AN đặt E; F sao cho ME = NF. CMR: EF; MN; AP đồng quy
Bài 5. Cho tam giác ABC có AB= 12cm, AC= 16cm, BC= 20cm. Gọi D là trung điểm của BC. Qua D kẻ
đường thẳng vuông góc với BC cắt AB và AC lần lượt tại M và N.
a/ Chứng minh tam giác DNC đồng dạng tam giác ABC.
b/ Tính các cạnh của tam giác DNC.
c/ Tính MB, MC
a, Ta có:\(AB^2+AC^2=12^2+16^2=400\)(cm)
\(BC^2=20^2=400\)(cm)
\(\Rightarrow AB^2+AC^2=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A
Xét Δ DNC và Δ ABC có:
\(\widehat{NDC}=\widehat{BAC}\left(=90^o\right)\)
Chung \(\widehat{C}\)
⇒Δ DNC \(\sim\) Δ ABC (g.g)
b, Ta có: BD=DC=1/2.BC=1/2.20=10(cm)
Δ DNC \(\sim\) Δ ABC (cma)
\(\Rightarrow\dfrac{ND}{AB}=\dfrac{NC}{BC}=\dfrac{DC}{AC}\Rightarrow\dfrac{ND}{12}=\dfrac{NC}{20}=\dfrac{10}{16}\Rightarrow\left\{{}\begin{matrix}ND=7,5\left(cm\right)\\NC=12,5\left(cm\right)\end{matrix}\right.\)
c, Xét Δ DBM và Δ ABC có:
Chung \(\widehat{B}\)
\(\widehat{BDM}=\widehat{BAC}\left(=90^o\right)\)
⇒Δ DBM \(\sim\) Δ ABC(g.g)
\(\Rightarrow\dfrac{MB}{BC}=\dfrac{BD}{AB}\Rightarrow\dfrac{MB}{20}=\dfrac{10}{12}\Rightarrow MB=\dfrac{50}{3}\left(cm\right)\)
Ta có: MD⊥BC, BD=DC ⇒ ΔBDC cân tại M
\(\Rightarrow MB=MC=\dfrac{50}{3}\left(cm\right)\)