Tìm GTNN của biểu thức:
C=\(\left|2000x+2016\right|+\left|2000x-2017\right|\)
Tìm GTNN của biểu thức : C = \(\left|2000x+2012\right|\) + \(\left|2000x-2013\right|\)
Tìm GTNN của biểu thức:
C=|2000x+2016|+|2000x−2017|
Ta có: C= |2000x+2016|+|2000x-2017|
=> C = |2000x+2016+2000x-2017|
= 4000x-1 <= -1
Dấu "=" xảy ra khi 4000x=0 => x=0
Vậy Cmax=-1 khi x=0
Không chắc. Chúc bạn học giỏi!
C=|2000x+2016|+|2000x-2017|=|2000x+2016|+|2017-2000x|
Áp dụng : |A|+|B|>=|A+B|
dấu "=" xảy ra <=>A.B=0 ta có
C=|2000x+2016|+|2017-2000x|>=|2000x+2016+2017-200x|=4033
dấu "=" xảy ra <=>(2000x+2016).(2017-2000x)=0
<=>2000x+2016=0=>2000x=-2016=>x=1.008
hoặc 2017-2000x=0=>x=2017:2000=1,0085
vaayjMaxC=4033<=>x=.......
Tìm giá trị nhỏ nhất của biểu thức
\(C=|2000x+2012|+\left|2000x-2013\right|\)
Ta có \(\left|2000x+2012\right|+\left|2013-2000x\right|\ge\left|2000x+2012+2013-2000x\right|=\left|4025\right|=4025\)
^.^
timg GTNN
\(A=\frac{x^2-2x+2007}{2000x^2}\left(x\ne0\right)\)
sửa lại chút nè \(A=\frac{x^2-2x+2007}{2007x^2}\)
\(=\frac{2007x^2-2x\cdot2007+2007^2}{2007x^2}\)
\(=\frac{x^2-2x\cdot2007+2007^2}{2007x^2}+\frac{2006x^2}{2007x^2}\)
\(=\frac{\left(x-2007\right)^2}{2007x^2}+\frac{2006}{2007}\ge\frac{2006}{2007}\)
Vậy \(A_{min}=\frac{2006}{2007}\)khi \(x-2007=0\Leftrightarrow x=2007\)
@ Bình ơi @ Em sai từ dòng đầu xuống dòng 2.
Tìm GTNN của biểu thức A= \(\dfrac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}\)
\(A=\dfrac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=1-\dfrac{1}{\left|x-2016\right|+2018}\)
Để A nhỏ nhất thì \(\dfrac{1}{\left|x-2016\right|+2018}\) lớn nhất thì \(\left|x-2016\right|+2018\) nhỏ nhất
Ta có: \(\left|x-2016\right|\ge0\)
\(\Rightarrow\left|x-2016\right|+2018\ge2018\)
\(\Rightarrow\dfrac{1}{\left|x-2016\right|+2018}\le\dfrac{1}{2018}\)
\(\Rightarrow A=1-\dfrac{1}{\left|x-2016\right|+2018}\ge1-\dfrac{1}{2018}=\dfrac{2017}{2018}\)
Dấu " = " khi \(\left|x-2016\right|=0\Rightarrow x=2016\)
Vậy \(MIN_A=\dfrac{2017}{2018}\) khi x = 2016
Ta có :
\(A=\dfrac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\dfrac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\dfrac{1}{\left|x-2016\right|+2018}\)Vì \(\left|x-2016\right|\ge0\Rightarrow\left|x-2016\right|+2018\ge2018\)
\(\Rightarrow\dfrac{1}{\left|x-2016\right|+2018}\le\dfrac{1}{2018}\)
\(\Rightarrow1-\dfrac{1}{\left|x-2016\right|+2018}\ge\dfrac{2017}{2018}\)
\(\Rightarrow A_{min}=\dfrac{2017}{2018}\)
<=> |x - 2016| = 0
<=> x = 2016
Tính GTNN của biểu thức:
\(\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|+\left|x-2018\right|+\left|x-2019\right|\)
Cho biểu thức A=\(\left|x-2016\right|+\left|x-2017\right|+\left|x-2018\right|\). Tìm GTNN của A
Ta có:
|x−2015|+|x−2016|+|x−2017||x−2015|+|x−2016|+|x−2017|
=|x−2016|+|x−2015|+|x−2017|=|x−2016|+|x−2015|+|x−2017|
=|x−2016|+(|x−2015|+|x−2017|)=|x−2016|+(|x−2015|+|x−2017|)
∗)∗) Áp dụng BĐT |a|+|b|≥|a+b||a|+|b|≥|a+b| ta có:
|x−2015|+|x−2017|=|x−2015|+|x−2017|= |x−2015|+|2017−x||x−2015|+|2017−x|
≥|x−2015+2017−x|=|2|=2≥|x−2015+2017−x|=|2|=2
∗)∗) Dễ thấy: |x−2016|≥0∀x|x−2016|≥0∀x
⇔|x−2015|+|x−2016|+|x−2017|⇔|x−2015|+|x−2016|+|x−2017| ≥2≥2
Đẳng thức xảy ra ⇔⎧⎩⎨⎪⎪x−2015≥0x−2016=0x−2017≤0⇔⎧⎩⎨⎪⎪x≥2015x=2016x≤2017⇔{x−2015≥0x−2016=0x−2017≤0⇔{x≥2015x=2016x≤2017 ⇔x=2016⇔x=2016
Vậy GTNNGTNN của biểu thức là 2⇔x=2016
Tìm x để biểu thức B=\(\left|x-5\right|-\left|x-6\right|\) đạt GTNN
C= \(\left|x-2015\right|+\left|x+2016\right|+\left|x-2017\right|\) đạt GTNN
tìm giá trị nhỏ nhất của C=\(_{|2000x+2012|+|2000x-2013}\)
D=\(\left(|x-3|+2\right)^2+|y+3|+2007\)