Những câu hỏi liên quan
H24
Xem chi tiết
ST
27 tháng 8 2017 lúc 10:03

a,\(\frac{x}{y}=\frac{7}{3}\Rightarrow\frac{x}{7}=\frac{y}{3}\Rightarrow\frac{5x}{35}=\frac{2y}{6}=\frac{5x-2y}{35-6}=\frac{87}{29}=3\)

=> x = 21; y = 9

b, \(\frac{x}{19}=\frac{y}{21}\Rightarrow\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)

=> x = 38; y = 42

Bình luận (0)
H1
27 tháng 8 2017 lúc 9:41

Dễ lém sao đăng z?

Bình luận (0)
H24
27 tháng 8 2017 lúc 9:43

giup mk voi

Bình luận (0)
TT
Xem chi tiết
GV
27 tháng 9 2017 lúc 8:36

a) \(\frac{x}{y}=\frac{7}{3}\Rightarrow\frac{x}{7}=\frac{y}{3}\)

Theo tính chất dãy tỉ số bằng nhau:

  \(\frac{x}{7}=\frac{y}{3}=\frac{5x-2y}{5.7-2.3}=\frac{87}{29}=3\)

=> x = 7 x 3 = 21 ; y = 3x3 =9

b) \(\frac{x}{19}=\frac{y}{21}=\frac{2x-y}{2.19-21}=\frac{34}{17}=2\)

=> \(x=19.2=38\) ; \(y=21.2=42\)

Bình luận (0)
NT
Xem chi tiết
TT
16 tháng 8 2015 lúc 15:21

Áp dụng dãy tỉ só bằng nhau ta có  :

     \(\frac{x}{19}=\frac{y}{21}=\frac{2x}{38}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)

=> x = 2.19 = 38 

=> y = 2.21 = 42 

Bình luận (0)
H24
Xem chi tiết
MH
9 tháng 11 2021 lúc 20:17

A nha em

Bình luận (0)
NT
9 tháng 11 2021 lúc 20:17

Chọn A

Bình luận (0)
NQ
9 tháng 11 2021 lúc 20:21

A

Bình luận (0)
DB
Xem chi tiết
TN
2 tháng 8 2018 lúc 7:29

Biểu đồBiểu đồ

Bình luận (0)
ND
2 tháng 8 2018 lúc 8:07

a)Vì \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)nên \(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{x}{28}\).

Áp dụng t/c dãy tỉ số = nhau, ta có :

\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)

⇒2x = 3.30 = 90 ⇒ x = 45

3y = 3.60 = 180 ⇒ y = 60

z = 3.28 = 84

Ý b) có gì đó sai sai ?

c)Ta có :

\(2x=3y=5z\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)

Áp dụng t/c dãy tỉ số = nhau, ta có :

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)

⇒x = 5.15 = 75

y = 5.10 = 50

z = 5.6 = 30

d)Ta có :

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\left(k\in Z\right)\)

⇒ x = 2k ; y = 3k ; z = 5k

⇒ xyz = 2k.3k.5k = 30k3 = 810

⇒ k = 3 Vậy x = 3.2 = 6; y = 3.3 = 9; z = 3.5 = 15
Bình luận (0)
TH
Xem chi tiết
NT
15 tháng 10 2021 lúc 21:34

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{19}=\dfrac{y}{21}=\dfrac{2x-y}{2\cdot19-21}=\dfrac{34}{17}=2\)

Do đó: x=38;y=42

Bình luận (0)
CT
Xem chi tiết
AB
2 tháng 8 2017 lúc 16:57

Áp dụng tinshh chất dãy tỉ số bằng nhau ; ta được :

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{2x}{6}=\dfrac{3y}{12}=\dfrac{5z}{25}=\dfrac{2x+3y+5z}{6+12+25}=\dfrac{86}{43}=2\)

Do đó :

\(\dfrac{x}{3}=2\Rightarrow x=2.3=6\)

\(\dfrac{y}{4}=2\Rightarrow y=2.4=8\)

\(\dfrac{z}{5}=2\Rightarrow z=2.5=10\)

Vậy x = 6 ; y = 8 ; z = 10

Bình luận (0)
H24
2 tháng 8 2017 lúc 17:00

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có:

\(\dfrac{2x}{6}=\dfrac{3y}{12}=\dfrac{5z}{25}=\dfrac{2x+3y+5z}{6+12+25}=\dfrac{86}{43}=2\) \

\(\Rightarrow x=2.3=6\)

\(y=2.4=8\)

\(z=2.5=10\)

Bình luận (0)
NL
Xem chi tiết
HN
11 tháng 7 2017 lúc 20:17

a) Ta có: \(\dfrac{x}{y}=\dfrac{17}{3}\Rightarrow\dfrac{x}{17}=\dfrac{y}{3}\) và x + y = 60

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{x}{17}=\dfrac{y}{3}=\dfrac{x+y}{17+3}=\dfrac{60}{20}=3\)

\(\dfrac{x}{17}=3\Rightarrow x=17.3=51\)

\(\dfrac{y}{3}=3\Rightarrow y=3.3=9\)

Vậy x = 51; y = 9

b) Ta có: \(\dfrac{x}{19}=\dfrac{y}{21}\Rightarrow\dfrac{2x}{38}=\dfrac{y}{21}\) và 2x - y = 34

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)

\(\dfrac{x}{19}=2\Rightarrow x=2.19=38\)

\(\dfrac{y}{21}=2\Rightarrow y=21.2=42\)

Vậy x = 38; y = 42.

Bình luận (0)
NJ
11 tháng 7 2017 lúc 17:03

Ta có : \(\dfrac{x}{y}\) = \(\dfrac{17}{3}\) \(\Leftrightarrow\) \(\dfrac{x}{17}\) = \(\dfrac{y}{3}\)\(x+y\) \(=60\)

\(\text{Áp dụng tính chất của dãy tỉ số bằng nhau , ta được : }\)

\(\dfrac{x}{17}\) = \(\dfrac{y}{3}\) = \(\dfrac{x+y}{17+3}\) = \(\dfrac{60}{20}\) = \(3\)

\(+\)) \(\dfrac{x}{17}\) \(=\)\(3\) \(\Rightarrow\) \(x=51\)

+ ) \(\dfrac{y}{3}\) \(=3\) \(\Rightarrow\) \(y=9\)

Vậy \(x=51\) ; \(y=9\)

Ta có : \(\dfrac{x}{19}\) = \(\dfrac{y}{21}\) \(\Leftrightarrow\) \(\dfrac{2x}{38}\) \(=\) \(\dfrac{y}{21}\)\(2x-y=34\)

\(\text{Áp dụng tính chất của dãy tỉ số bằng nhau , ta được : }\)

\(\dfrac{2x}{38}\)\(=\) \(\dfrac{y}{21}\) = \(\dfrac{2x-y}{38-21}\) \(=\) \(\dfrac{34}{17}\) \(=\) \(2\)

+ ) \(\dfrac{2x}{38}\) = \(\dfrac{x}{19}\) \(=\) \(2\) \(\Rightarrow\) \(x=38\)

+ ) \(\dfrac{y}{21}\) = 2 \(\Rightarrow\) \(x=42\)

Vậy \(x=38\) ; \(x=42\)

Bình luận (0)
ND
11 tháng 7 2017 lúc 17:26

a, Ta có : \(\dfrac{x}{y}=\dfrac{17}{3}\)=> \(\dfrac{x}{17}\)=\(\dfrac{y}{3}\) x + y =60

Áp dụng tính chât của dãy tỉ số bằng nhau ta có

\(\dfrac{x}{17}=\dfrac{y}{3}\) = \(\dfrac{x+y}{17+3}=\dfrac{60}{20}=3\)

\(\dfrac{x}{17}=3=>x=51\)

\(\dfrac{y}{3}\) = 3 => y = 9

Vậy x= 51 , y =9

b, Ta có : \(\dfrac{x}{19}=\dfrac{y}{21}\) => \(\dfrac{2x}{38}=\dfrac{y}{12}\)và 2x-y=34

Áp dụng tính chất của dãy tỉ số bằng nhau có :

\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)

\(\dfrac{x}{19}\)=2 => x = 2 . 19 = 38

\(\dfrac{y}{21}\)=2 => y= 42

Vậy x=34 , y = 42

Bình luận (0)
AO
Xem chi tiết
HD
17 tháng 10 2017 lúc 15:13

\(a)\dfrac{y+z+1}{x}=\dfrac{z+x+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{y+z+x+x+z+2+x+y-3}{x+y+z}\)

\(=\dfrac{\left(x+y+z\right)+\left(x+y+z\right)+\left(1+2-3\right)}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)

Lại có: \(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)

\(\Rightarrow2=\dfrac{1}{x+y+z}\Rightarrow2\left(x+y+z\right)=1\Rightarrow x+y+z=\dfrac{1}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{y+z+1}{x}=2\\\dfrac{x+z+2}{y}=2\\\dfrac{x+y-3}{z}=2\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y+z+1=2x\\x+z+2=2y\\x+y-3=2z\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y+z+x+1=3x\\x+y+z+2=3y\\x+y+z-3=3z\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2}+1=3x\\\dfrac{1}{2}+2=3y\\\dfrac{1}{2}-3=3z\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1+\dfrac{1}{2}}{3}\\y=\dfrac{\dfrac{1}{2}+2}{3}\\z=\dfrac{\dfrac{1}{2}-3}{3}\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{5}{6}\\z=\dfrac{-5}{6}\end{matrix}\right.\)

Chúc bạn học tốt!

Bình luận (0)