Những câu hỏi liên quan
BA
Xem chi tiết
H24
20 tháng 11 2018 lúc 18:15

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=b.k;b=d.k\)

Thay :

(1) : \(\dfrac{3a+2b}{3a-2b}=\dfrac{3bk+2b}{3bk-2b}=\dfrac{b.\left(3.k+2\right)}{b.\left(3.k-2\right)}=\dfrac{3.k+2}{3.k-2}\)

(2) : \(\dfrac{3c+2d}{3c-2d}=\dfrac{3dk+2d}{3dk-2d}=\dfrac{d.\left(3.k+2\right)}{d.\left(3.k-2\right)}=\dfrac{3.k+2}{3.k-2}\)

Do đó : \(\dfrac{3a+2b}{3a-2b}=\dfrac{3c+2d}{3c-2d}\)

Bình luận (0)
TL
Xem chi tiết
TL
Xem chi tiết
H24
Xem chi tiết
LF
25 tháng 9 2017 lúc 23:08

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT=\dfrac{a}{b+2c+3d}+\dfrac{b}{c+2d+3a}+\dfrac{c}{d+2a+3b}+\dfrac{d}{a+2b+3c}\)

\(=\dfrac{a^2}{ab+2ac+3ad}+\dfrac{b^2}{bc+2bd+3ab}+\dfrac{c^2}{cd+2ac+3bc}+\dfrac{d^2}{ad+2bd+3cd}\)

\(\ge\dfrac{\left(a+b+c+d\right)^2}{4\left(ab+ad+bc+bd+ca+cd\right)}\ge\dfrac{\left(a+b+c+d\right)^2}{\dfrac{3}{2}\left(a+b+c+d\right)^2}=\dfrac{2}{3}\)

*Chứng minh \(4\left(ab+ad+bc+bd+ca+cd\right)\le\dfrac{3}{2}\left(a+b+c+d\right)^2\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(a-c\right)^2+\left(c-d\right)^2\ge0\)

Bình luận (1)
MN
Xem chi tiết
NP
Xem chi tiết
NT
27 tháng 8 2023 lúc 9:58

Đặt a/b=c/d=k

=>a=bk; c=dk

a: \(\dfrac{3a+2b}{a}=\dfrac{3bk+2b}{bk}=\dfrac{3k+2}{k}\)

\(\dfrac{3c+2d}{c}=\dfrac{3dk+2d}{dk}=\dfrac{3k+2}{k}\)

Do đó: \(\dfrac{3a+2b}{a}=\dfrac{3c+2d}{c}\)

b: \(\dfrac{2a-3b}{b}=\dfrac{2bk-3b}{b}=2k-3\)

\(\dfrac{2c-3d}{d}=\dfrac{2dk-3d}{d}=2k-3\)

Do đó: \(\dfrac{2a-3b}{b}=\dfrac{2c-3d}{d}\)

c: \(\dfrac{a}{a-2b}=\dfrac{bk}{bk-2b}=\dfrac{k}{k-2}\)

\(\dfrac{c}{c-2d}=\dfrac{dk}{dk-2d}=\dfrac{k}{k-2}\)

Do đó: \(\dfrac{a}{a-2b}=\dfrac{c}{c-2d}\)

Bình luận (1)
EC
Xem chi tiết
MY
4 tháng 7 2021 lúc 18:36

\(S=\left(1+\dfrac{2a}{3b}\right)\left(1+\dfrac{2b}{3c}\right)\left(1+\dfrac{2c}{3d}\right)\left(1+\dfrac{2d}{3a}\right)\)

có \(1+\dfrac{2a}{3b}\ge2\sqrt{\dfrac{2a}{3b}}\)(BDT AM-GM)

\(=>1+\dfrac{2b}{3c}\ge2\sqrt{\dfrac{2b}{3c}}\)

\(=>1+\dfrac{2c}{3d}\ge2\sqrt{\dfrac{2c}{3d}}\)

\(=>1+\dfrac{2d}{3a}\ge2\sqrt{\dfrac{2d}{3a}}\)

\(=>S\ge16\sqrt{\dfrac{2a.2b.2c.2d}{3a.3b.3c.3d}}=16\sqrt{\dfrac{16abcd}{81abcd}}=16\sqrt{\dfrac{16}{81}}=\dfrac{64}{9}\)

Bình luận (1)
YT
Xem chi tiết
NT
11 tháng 11 2023 lúc 20:52

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=bk;c=dk\)

1: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2\cdot bk+3\cdot dk}{2b+3d}=\dfrac{k\left(2b+3d\right)}{2b+3d}=k\)

\(\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k\left(2b-3d\right)}{2b-3d}=k\)

Do đó: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)

2: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4\cdot bk-3b}{4\cdot dk-3d}=\dfrac{b\left(4k-3\right)}{d\left(4k-3\right)}=\dfrac{b}{d}\)

\(\dfrac{4a+3b}{4c+3d}=\dfrac{4bk+3b}{4dk+3d}=\dfrac{b\left(4k+3\right)}{d\left(4k+3\right)}=\dfrac{b}{d}\)

Do đó: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)

3: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{b\left(3k+5\right)}{b\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)

\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{d\left(3k+5\right)}{d\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)

Do đó: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)

4: \(\dfrac{3a-7b}{b}=\dfrac{3bk-7b}{b}=\dfrac{b\left(3k-7\right)}{b}=3k-7\)

\(\dfrac{3c-7d}{d}=\dfrac{3dk-7d}{d}=\dfrac{d\left(3k-7\right)}{d}=3k-7\)

Do đó: \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)

Bình luận (0)
NT
Xem chi tiết
H24
18 tháng 6 2019 lúc 8:05

day la cac tinh chat ma

Bình luận (2)
TG
18 tháng 6 2019 lúc 8:12

a/

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{c^3}{d^3}\)

Áp dụng tỉ lệ thức ta có:

\(\frac{a^3}{b^3}=\frac{c^3}{d^3}\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a^3}{c^3}=\frac{b^3}{d^3}=\frac{a^3+b^3}{c^3+d^3}=\frac{a^3-b^3}{c^3-d^3}\)

Vậy \(\frac{a^3+b^3}{c^3+d^3}=\frac{a^3-b^3}{c^3-d^3}\)

Bình luận (0)