Giai phương trình nghiệm nguyên:
4x+4y+10=5xy
Tìm nghiệm nguyên dương của phương trình : 4x + 4y + 10 = 5xy
\(pt\Leftrightarrow20x+20y+50=25xy\)
\(\Leftrightarrow5y\left(5x-4\right)-4\left(5x-4\right)=66\)
\(\Leftrightarrow\left(5x-4\right)\left(5y-4\right)=66\)
đến đây thì dễ rồi
Tìm nghiệm nguyên dương của phương trình 4x+4y+10=5xy
giải phương trình nghiệm nguyên : x-5xy-4y=3
GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN:
\(3x^2-5xy-2y^2-4x+8y+3=0\)
Tìm nghiệm nguyên dương của phương trình sau \(4x^2-4xy+4y^2=16\)
\(\Leftrightarrow4x^2-4xy+y^2=16-3y^2\)
\(\Leftrightarrow16-3y^2=\left(2x-y\right)^2\ge0\)
\(\Rightarrow y^2\le\dfrac{16}{3}\)
\(\Rightarrow y^2=\left\{1;4\right\}\)
\(\Rightarrow\left[{}\begin{matrix}y=1\\y=2\end{matrix}\right.\)
- Với \(y=1\Rightarrow4x^2-4x+4=16\Leftrightarrow x^2-x-3=0\) (ko có x nguyên thỏa mãn)
- Với \(y=2\Rightarrow4x^2-8x=0\Rightarrow x=2\)
Vậy \(\left(x;y\right)=\left(2;2\right)\)
Ta có: 4x2-4xy+4y2=16
⇔ (2x-y)2+3y2=16 (1)
Vì (2x-y)2≥0 ⇒ 3y2≤16
⇔ \(y^2\le\dfrac{16}{3}\)
⇔ y2={1;4} ⇔ y={1;2}
- Với y=1 ⇔ (2x-1)2 = 13 (loại do x nguyên dương)
- Với y=2 ⇔ (2x-2)2 = 4 \(\Leftrightarrow\left[{}\begin{matrix}2x-2=2\\2x-2=-2\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=2\left(tm\right)\\x=0\left(loại\right)\end{matrix}\right.\)
Vậy (x;y)=(2;2)
Tìm nghiệm nguyên x,y của phương trình: a) 4x⁴+4x²+40=4y²-4xy b) x+y+xy=x²+y²
Tìm nghiệm nguyên của phương trình 3x^2+4y^2+4x+3y-4=0
Tìm nghiệm nguyên của phương trình 3x^2+4y^2+4x+3y-4=0
Giai phương trình nghiệm nguyên :
\(\frac{11x}{5}-\sqrt{2x+1}=3y-\sqrt{4y}-1+2\)
\(\frac{11x}{5}-\sqrt{2x+1}=3y-\sqrt{4y-1}+2\)
\(\Leftrightarrow\sqrt{4y-1}-\sqrt{2x+1}=3y+2-\frac{11x}{5}\)
Vì 4y - 1 chia cho 4 có số dư là 2 nên \(\sqrt{4y-1}\)là số vô tỷ .
Ta có VP là số hữu tỉ. VT là số vô tỷ và \(\hept{\begin{cases}4y-1\\2x+1\end{cases}}\)là 2 số hữu tỷ nên.
\(\Rightarrow\sqrt{4y-1}-\sqrt{2x+1}=0\)
\(\Leftrightarrow x=2y-1\)
Thế lại phương trình ban đầu ta được.
\(\Rightarrow y=3\)
\(\Rightarrow x=5\)
Vậy nghiệm cần tìm là \(\hept{\begin{cases}x=5\\y=3\end{cases}}\)
11x5 −√2x+1=3y−√4y−1+2
⇔√4y−1−√2x+1=3y+2−11x5
Vì 4y - 1 chia cho 4 có số dư là 2 nên √4y−1là số vô tỷ .
Ta có VP là số hữu tỉ. VT là số vô tỷ và {
4y−1 |
2x+1 |
là 2 số hữu tỷ nên.
⇒√4y−1−√2x+1=0
⇔x=2y−1
Thế lại phương trình ban đầu ta được.
⇒y=3
⇒x=5
Vậy nghiệm cần tìm là {
x=5 |
y=3 |
@alibaba_nguyễn chép sai đề rồi kìa bạn