Những câu hỏi liên quan
H24
Xem chi tiết
NT
21 tháng 9 2023 lúc 4:57

\(x+y+z+8=2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\left(1\right)\)

Áp dụng Bđt Bunhiacopxki :

\(\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le\left(2^2+4^2+6^2\right)\left(x-1+y-2+z-3\right)\)

\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z-6\right)\)

\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z+8\right)-784\)

Dấu "=" xảy ra khi và chỉ khi

\(\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=\dfrac{x+y+z-6}{14}\left(2\right)\)

Đặt \(t=x+y+z+8\)

\(\left(1\right)\Leftrightarrow t^2=56t-784\)

\(\Leftrightarrow t^2-56t+784=0\)

\(\Leftrightarrow\left(t-28\right)^2=0\)

\(\Leftrightarrow t=28\)

\(\Leftrightarrow x+y+z+8=28\)

\(\Leftrightarrow x+y+z-6=14\)

\(\left(2\right)\Leftrightarrow\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1.2=2\\y-2=1.4=4\\z-2=1.8=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=6\\z=10\end{matrix}\right.\) thỏa mãn đề bài

Bình luận (0)
II
Xem chi tiết
NH
Xem chi tiết
ML
29 tháng 7 2016 lúc 11:01

a,

\(pt\Leftrightarrow\left(x-1-2\sqrt{x-1}+1\right)+\left(y-2-4\sqrt{y-2}+4\right)+\left(z-3-6\sqrt{z-3}+9\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\)

Bình luận (0)
NN
Xem chi tiết
PL
11 tháng 6 2019 lúc 21:00

\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)

\(\Rightarrow\left(x-1\right)-2\sqrt{x-1}+1\)\(+\left(y-2\right)-4\sqrt{y-2}+4\)\(+\left(z-3\right)-6\sqrt{z-3}+9\)\(=0\)

\(\Rightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}\Rightarrow\hept{\begin{cases}\sqrt{x-1}=1\\\sqrt{y-2}=2\\\sqrt{z-3}=3\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}}\)

Bình luận (0)
TD
11 tháng 6 2019 lúc 21:04

\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)

\(\left(x-1-2\sqrt{x-1}+1\right)+\left(y-2-2\sqrt{y-2}.2+4\right)+\left(z-3-2\sqrt{z-3}.3+9\right)=0\)

\(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)( 1 )

Mà \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2\ge0\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\left(\sqrt{x-1}-1\right)^2=\left(\sqrt{y-2}-2\right)^2=\left(\sqrt{z-3}-3\right)^2=0\)

từ đó tìm được : \(x=2;y=6;z=12\)

Bình luận (0)
DH
11 tháng 6 2019 lúc 21:04

ĐKXĐ \(x\ge1,y\ge2,z\ge3\)

Phương trình đã cho tương đương với :

\(x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0.\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

Mà \(\left(\sqrt{x-1}-1\right)^2\ge0;\left(\sqrt{y-2}-2\right)^2\ge0;\left(\sqrt{z-3}-3\right)^2\ge0\)

Suy ra \(\left(\sqrt{x-1}-1\right)^2=\left(\sqrt{y-2}-2\right)^2=\left(\sqrt{z-3}-3\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}=1\\\sqrt{y-2}=2\\\sqrt{z-3}=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x-1=1\\y-2=4\\z-3=9\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}\left(tmđk\right).}\)

Bình luận (0)
PA
Xem chi tiết
DH
1 tháng 6 2021 lúc 11:08

a) \(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)

\(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
DH
1 tháng 6 2021 lúc 11:16

b) \(\sqrt{x-26}+\sqrt{y+20}+\sqrt{z+3}=\frac{1}{2}\left(x+y+z\right)\)

\(\Leftrightarrow x+y+z-2\sqrt{x-26}-2\sqrt{y+20}-2\sqrt{z+3}=0\)

\(\Leftrightarrow x-26-2\sqrt{x-26}+1+y+20-2\sqrt{y+20}+1+z+3+2\sqrt{z+3}+1=0\)

\(\Leftrightarrow\left(\sqrt{x-26}-1\right)^2+\left(\sqrt{y+20}-1\right)^2+\left(\sqrt{z+3}-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-26}-1=0\\\sqrt{y+20}-1=0\\\sqrt{z+3}-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=27\\y=-19\\z=-2\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
BY
Xem chi tiết
CW
24 tháng 6 2018 lúc 20:18

hình như...

b) \(x+y+z+8=2\sqrt{x-3}+4\sqrt{y-3}+6\sqrt{z-3}\)

\(\Leftrightarrow x-3+y-3+z-3+17=2\sqrt{x-3}+4\sqrt{y-3}+6\sqrt{z-3}\)

\(\Leftrightarrow\left(x-3-2\sqrt{x-3}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-3-6\sqrt{z-3}+9\right)+3=0\)

\(\Leftrightarrow\left(\sqrt{x-3}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-3}-3\right)^2+3=0\) (vô nghiệm, VT >/3)

Kl: ptvn

Bình luận (3)
CW
25 tháng 6 2018 lúc 14:01

c) là y - 2002 , z-2003 chứ 0 phải x đúng 0? (đoán thôi)

Bình luận (0)
MM
Xem chi tiết
HN
6 tháng 12 2016 lúc 16:49

ĐKXĐ : \(\hept{\begin{cases}x\ge1\\y\ge2\\z\ge3\end{cases}}\)

Với điều kiện trên thì pt đã cho tương đương với : 

\(\left[\left(x-1\right)-2\sqrt{x-1}+1\right]+\left[\left(y-2\right)-4\sqrt{y-2}+4\right]+\left[\left(z-3\right)-6\sqrt{z-3}+9\right]=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

Mà \(\left(\sqrt{x-1}-1\right)^2\ge0,\left(\sqrt{y-2}-2\right)^2\ge0,\left(\sqrt{z-3}-3\right)^2\ge0\)

\(\Rightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2\ge0\)

Vậy đẳng thức xảy ra khi \(\hept{\begin{cases}\left(\sqrt{x-1}-1\right)^2=0\\\left(\sqrt{y-2}-2\right)^2=0\\\left(\sqrt{z-3}-3\right)^2=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\) (tmđk)

Bình luận (0)
H24
20 tháng 8 2017 lúc 10:59

ĐKXĐ : {

x≥1
y≥2
z≥3

Với điều kiện trên thì pt đã cho tương đương với : 

[(x−1)−2√x−1+1]+[(y−2)−4√y−2+4]+[(z−3)−6√z−3+9]=0

⇔(√x−1−1)2+(√y−2−2)2+(√z−3−3)2=0

Mà (√x−1−1)2≥0,(√y−2−2)2≥0,(√z−3−3)2≥0

⇒(√x−1−1)2+(√y−2−2)2+(√z−3−3)2≥0

Vậy đẳng thức xảy ra khi {

(√x−1−1)2=0
(√y−2−2)2=0
(√z−3−3)2=0
Bình luận (0)
DX
13 tháng 9 2018 lúc 19:30

8294msnuw

Bình luận (0)
CD
Xem chi tiết
TN
13 tháng 6 2017 lúc 16:53

Sai đề kìa \(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)

\(\Leftrightarrow x+y+z+8-2\sqrt{x-1}-4\sqrt{y-2}-6\sqrt{z-3}=0\)

\(\Leftrightarrow\left(x-2\sqrt{x-1}+1-1\right)+\left(y-4\sqrt{y-2}+4-2\right)+\left(z-6\sqrt{z-3}+9-3\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\sqrt{x-1}=1\\\sqrt{y-2}=2\\\sqrt{z-3}=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\)

Bình luận (0)
H24
20 tháng 8 2017 lúc 10:57

Sai đề kìa x+y+z+8=2√x−1+4√y−2+6√z−3

⇔x+y+z+8−2√x−1−4√y−2−6√z−3=0

⇔(x−2√x−1+1−1)+(y−4√y−2+4−2)+(z−6√z−3+9−3)=0

⇔(√x−1−1)2+(√y−2−2)2+(√z−3−3)2=0

⇒{

√x−1−1=0
√y−2−2=0
√z−3−3=0

⇒{

√x−1=1
√y−2=2
√z−3=3
Bình luận (0)
DT
Xem chi tiết