Những câu hỏi liên quan
TM
Xem chi tiết
AH
29 tháng 1 2022 lúc 12:26

Bài 4:

$A+2=1+2+2^2+2^3+...+2^{11}$

$=(1+2)+(2^2+2^3)+....+(2^{10}+2^{11})$

$=(1+2)+2^2(1+2)+....+2^{10}(1+2)$

$=(1+2)(1+2^2+....+2^{10})$

$=3(1+2^2+...+2^{10})\vdots 3$

Vậy $A+2\vdots 3$ nên $A$ không chia hết cho $3$

Bình luận (1)
AH
29 tháng 1 2022 lúc 12:27

Bài 5:

$n^2+n+1=n(n+1)+1$
Vì $n,n+1$ là hai số tự nhiên liên tiếp nên sẽ tồn tại một số chẵn và 1 số lẻ

$\Rightarrow n(n+1)$ chẵn 

$\Rightarrow n^2+n+1=n(n+1)+1$ lẻ (điều phải chứng minh) 

 

Bình luận (1)
TT
Xem chi tiết
AH
30 tháng 11 2021 lúc 17:10

Lời giải:

$A=(1+2)+(2^2+2^3)+....+(2^{2020}+2^{2021})$

$=3+2^2(1+2)+....+2^{2020}(1+2)$

$=3+3.2^2+....+3.2^{2020}$

$=3(1+2^2+....+2^{2020})\vdots 3$
Ta có đpcm.

Bình luận (0)
TB
Xem chi tiết
LL
7 tháng 11 2021 lúc 15:38

\(A=\left(1+2\right)+2^2\left(1+2\right)+...+2^{10}\left(1+2\right)=3+2^2.3+...+2^{10}.3=3\left(1+2^2+...+2^{10}\right)⋮3\)

Bình luận (0)
MH
7 tháng 11 2021 lúc 15:39

\(A=1+2+2^2+2^3+...+2^{10}+2^{11}\)

\(=\left(1+2\right)+2^2\left(1+2\right)+...+2^{10}\left(1+2\right)\)

\(=\left(1+2\right)\left(1+2^2+...+2^{10}\right)\)

\(=3\left(1+2^2+...+2^{10}\right)\) ⋮3

Bình luận (0)
DM
Xem chi tiết
AH
28 tháng 10 2023 lúc 16:43

Lời giải:
$A=(1+2)+(2^2+2^3)+.....+(2^{10}+2^{11})$

$=(1+2)+2^2(1+2)+...+2^{10}(1+2)$
$=(1+2)(1+2^2+....+2^{10})$

$=3(1+2^2+....+2^{10})\vdots 3$ (đpcm)

Bình luận (0)
NH
28 tháng 10 2023 lúc 17:07

A = 1 + 2 + 22 + 23 + ... + 211

A = 20 + 21 + 22 + 23 + ... + 211

Xét dãy số: 0; 1; 2; 3;...;11 dãy số này là dãy số cách đều với khoảng cách là: 1 - 0 = 1

Số số hạng của dãy số trên là: (11 - 10) : 1 + 1 = 12 (số hạng)

Vậy A có 12 hang tử nhóm hai hạng tử liên tiếp của A với nhau vì  

12 : 2 = 6 nên:

A = (1 + 2) + ( 22 + 23) +...+ (210 + 211)

A = 3 + 22.(1 + 2) + ...+ 210.(1 + 2)

A = 3 + 22. 3 +...+ 210.3

A = 3.( 1 + 22 +...+ 210)

vì 3 ⋮ 3 nên 3.(1 + 22 + ...+ 210) ⋮ 3 hay A = 1 + 2+ ...+ 211 ⋮ 3(đpcm)

 

Bình luận (0)
BT
Xem chi tiết
AH
31 tháng 12 2023 lúc 14:07

1/

Tổng A là tổng các số hạng cách đều nhau 4 đơn vị.

Số số hạng: $(101-1):4+1=26$

$A=(101+1)\times 26:2=1326$

Bình luận (0)
AH
31 tháng 12 2023 lúc 14:09

2/

$B=(1+2+2^2)+(2^3+2^4+2^5)+(2^6+2^7+2^8)+(2^9+2^{10}+2^{11})$

$=(1+2+2^2)+2^3(1+2+2^2)+2^6(1+2+2^2)+2^9(1+2+2^2)$

$=(1+2+2^2)(1+2^3+2^6+2^9)$

$=7(1+2^3+2^6+2^9)\vdots 7$

Bình luận (0)
AH
31 tháng 12 2023 lúc 14:09

3/
$C=1+2+2^2+2^3+...+2^{99}$

$2C=2+2^2+2^3+2^4+...+2^{100}$

$\Rightarrow 2C-C=2^{100}-1$

$\Rightarrow C=2^{100}-1$

Bình luận (0)
TP
Xem chi tiết
AT
Xem chi tiết
TL
24 tháng 10 2016 lúc 21:42

\(A=1+2+2^2+2^3+............+2^{11}\)

\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{10}+2^{11}\right)\)

\(=\left(1+2\right)+2^2\left(1+2\right)+...+2^{10}\left(1+2\right)\)

\(=\left(1+2\right)\left(1+2^2+...+2^{10}\right)\)

\(=3\cdot\left(1+2^2+...+2^{10}\right)⋮3\)

=>đpcm

Bình luận (0)
PT
Xem chi tiết
NT
16 tháng 10 2023 lúc 20:23

a: \(A=1+2+2^2+...+2^{41}\)

=>\(2A=2+2^2+2^3+...+2^{42}\)

=>\(2A-A=2^{42}-1\)

=>\(A=2^{42}-1\)

b: \(A=\left(1+2\right)+2^2\left(1+2\right)+...+2^{40}\left(1+2\right)\)

\(=3\left(1+2^2+...+2^{40}\right)⋮3\)

\(A=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{39}\left(1+2+2^2\right)\)

\(=7\left(1+2^3+...+2^{39}\right)⋮7\)

Bình luận (0)
DA
Xem chi tiết
KL
22 tháng 10 2023 lúc 12:13

a) P = 1 + 3 + 3² + ... + 3¹⁰¹

= (1 + 3 + 3²) + (3³ + 3⁴ + 3⁵) + ... + (3⁹⁹ + 3¹⁰⁰ + 3¹⁰¹)

= 13 + 3³.(1 + 3 + 3²) + ... + 3⁹⁹.(1 + 3 + 3²)

= 13 + 3³.13 + ... + 3⁹⁹.13

= 13.(1 + 3³ + ... + 3⁹⁹) ⋮ 13

Vậy P ⋮ 13

b) B = 1 + 2² + 2⁴ + ... + 2²⁰²⁰

= (1 + 2² + 2⁴) + (2⁶ + 2⁸ + 2¹⁰) + ... + (2²⁰¹⁶ + 2²⁰¹⁸ + 2²⁰²⁰)

= 21 + 2⁶.(1 + 2² + 2⁴) + ... + 2²⁰¹⁶.(1 + 2² + 2⁴)

= 21 + 2⁶.21 + ... + 2²⁰¹⁶.21

= 21.(1 + 2⁶ + ... + 2²⁰¹⁶) ⋮ 21

Vậy B ⋮ 21

c) A = 2 + 2² + 2³ + ... + 2²⁰

= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁷ + 2¹⁸ + 2¹⁹ + 2²⁰)

= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2¹⁶.(2 + 2² + 2³ + 2⁴)

= 30 + 2⁴.30 + ... + 2¹⁶.30

= 30.(1 + 2⁴ + ... + 2¹⁶)

= 5.6.(1 + 2⁴ + ... + 2¹⁶) ⋮ 5

Vậy A ⋮ 5

d) A = 1 + 4 + 4² + ... + 4⁹⁸

= (1 + 4 + 4²) + (4³ + 4⁴ + 4⁵) + ... + (4⁹⁷ + 4⁹⁸ + 4⁹⁹)

= 21 + 4³.(1 + 4 + 4²) + ... + 4⁹⁷.(1 + 4 + 4²)

= 21 + 4³.21 + ... + 4⁹⁷.21

= 21.(1 + 4³ + ... + 4⁹⁷) ⋮ 21

Vậy A ⋮ 21

e) A = 11⁹ + 11⁸ + 11⁷ + ... + 11 + 1

= (11⁹ + 11⁸ + 11⁷ + 11⁶ + 11⁵) + (11⁴ + 11³ + 11² + 11 + 1)

= 11⁵.(11⁴ + 11³ + 11² + 11 + 1) + 16105

= 11⁵.16105 + 16105

= 16105.(11⁵ + 1)

= 5.3221.(11⁵ + 1) ⋮ 5

Vậy A ⋮ 5

Bình luận (0)
NA
Xem chi tiết
TH
21 tháng 11 2021 lúc 15:35

A=\((1+2)+\left(2^2+2^3\right)+...+\left(2^{19}+2^{20}\right)\)

A=\(3.1+2^2\left(1+2\right)+...+2^{19}\left(1+2\right)\)

A=\(3.1+3.2^2+...+3.2^{19}\)

A=\(3\left(1+2^2+...+2^{19}\right)\)\(⋮3\)

Vậy A\(⋮3\)

Bình luận (0)
VH
21 tháng 11 2021 lúc 16:20

A=(1+2)+(22+23)+...+(219+220)(1+2)+(22+23)+...+(219+220)

A=3.1+22(1+2)+...+219(1+2)3.1+22(1+2)+...+219(1+2)

A=3.1+3.22+...+3.2193.1+3.22+...+3.219

A=3(1+22+...+219)3(1+22+...+219)⋮3⋮3

NÊN  A⋮3

Bình luận (0)