Những câu hỏi liên quan
GL
Xem chi tiết
VT
Xem chi tiết
PT
29 tháng 9 2017 lúc 16:08

Ta có\(a>b-c\)

Mà a;b;c là độ dài 3 cạnh của 1 tam giác nên a;b;c>0

\(\Rightarrow a^2>\left(b-c\right)^2\)

\(\Leftrightarrow a^2>b^2-2bc+c^2\)

\(\Leftrightarrow a^2-b^2-c^2+2bc>0\)

Vậy \(a^2-b^2-c^2+2bc>0\)

Bình luận (0)
KV
Xem chi tiết
PH
19 tháng 7 2018 lúc 19:38

a^2 -b^2 -c^2 +2bc = a^2 -(b^2 +c^2 -2bc)

                            = a^2 -(b-c)^2

                            = (a-b+c)(a+b-c)

Theo bất đẳng thức tam giác, ta có: 

a+c>b và a+b>c

Suy ra: a-b+c >0 và a+b-c >0

Do đó: (a-b+c)(a+b-c) >0

Vậy a^2 - b^2 -c^2 + 2bc >0

Chúc bạn học tốt.

Bình luận (0)
NH
Xem chi tiết
NL
7 tháng 5 2021 lúc 21:58

Do a;b;c là 3 cạnh của 1 tam giác nên: \(\left\{{}\begin{matrix}a+b-c>0\\a+c-b>0\\b+c-a>0\end{matrix}\right.\)

BĐT đã cho tương đương:

\(\dfrac{a^2+2bc}{b^2+c^2}-1+\dfrac{b^2+2ac}{a^2+c^2}-1+\dfrac{c^2+2ab}{a^2+b^2}-1>0\)

\(\Leftrightarrow\dfrac{a^2-\left(b^2-2bc+c^2\right)}{b^2+c^2}+\dfrac{b^2-\left(a^2-2ac+c^2\right)}{a^2+c^2}+\dfrac{c^2-\left(a^2-2ab+b^2\right)}{a^2+b^2}>0\)

\(\Leftrightarrow\dfrac{a^2-\left(b-c\right)^2}{b^2+c^2}+\dfrac{b^2-\left(a-c\right)^2}{a^2+c^2}+\dfrac{c^2-\left(a-b\right)^2}{a^2+b^2}>0\)

\(\Leftrightarrow\dfrac{\left(a+c-b\right)\left(a+b-c\right)}{b^2+c^2}+\dfrac{\left(a+b-c\right)\left(b+c-a\right)}{a^2+c^2}+\dfrac{\left(b+c-a\right)\left(a+c-b\right)}{a^2+b^2}>0\) (luôn đúng)

Vậy BĐT đã cho đúng

Bình luận (0)
NO
Xem chi tiết
H24
22 tháng 10 2021 lúc 11:20

\(a^2-b^2-c^2+2bc\)

\(=a^2-\left(b-c\right)^2\)

\(=\left(a-b+c\right)\left(a+b-c\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
QN
Xem chi tiết
NH
29 tháng 6 2015 lúc 12:44

1) \(x^3-x^2+2x=x\left(x^2-x+2\right)\)bạn xem lại đề xem có sai không nha. chỗ này sau khi thu gọn và cho x ra ngoài thì phải có dạng: \(x\left(x^2-3x+2\right)=x\left(x^2-2x-x+2\right)=x\left(x-1\right)\left(x-2\right)\)hoặc \(x\left(x^2+3x+2\right)=x\left(x^2+2x+x+2\right)=x\left(x+1\right)\left(x+2\right)\)

nó là tích của 3 số tự nhiên liên tiếp => trong đó phỉa có 1 số chia hết cho 2, có một số chia hết cho 3. vì 3,2 ngtố cùng nhau =>tích của 3 số ltiếp sẽ chia hết cho 3.2=6 => chia hết cho 6 với mọi x

2) \(a^2-\left(b^2-2bc+c^2\right)=a^2-\left(b-c\right)^2=\left(a+b-c\right)\left(a-b+c\right)\)

mình làm đến đây thì k biết giải thích sao nữa :( thôi cứ tick đúng cho mình nha

Bình luận (0)
ML
29 tháng 6 2015 lúc 16:20

Câu 1 Sai đề. Chỉ cần thay x = 1,2,3 ta thấy ngay sai 

Câu 2 sai đề. chứng minh như sau;

Thay a,b,c là số dài 3 cạnh của 1 tam giác đều có cạnh 0,5 (nhỏ hơn 1 là đủ)

\(a^2-\left(b^2-2bc+c^2\right)>c\)\(\Leftrightarrow a^2-\left(b-c\right)^2>c\) 

Với a = b = c = 0,5 thì điều trên tương đương \(0,5^2-\left(0,5-0,5\right)^2>0,5\)

\(\Leftrightarrow0,25>0,5\) => vô lí

Bình luận (0)
NT
Xem chi tiết
NH
9 tháng 8 2018 lúc 20:26

Bài toán này chỉ chứng minh được với điều kiện đó là tam giác vuông với 2 cạnh của góc vuông là a & b. 
Lúc đó ta sẽ có: 
a^2 + b^2 = c^2 
Suy ra: 
a^2 + b^2 - c^2 = 0 (1) 
Đề bài là: 
M = 4a^2b^2 – ( a^2+ b^2 – c^2) 
Thay (1) vào: 
M = 4a^2b^2 - 0 
M = 4a^2b^2 
M > 0 (hay M luôn dương). 

Bình luận (0)
KM
9 tháng 8 2018 lúc 20:29

Ta có \(a^2-b^2-c^2-2bc\)

\(=a^2-\left(b^2+2bc+c^2\right)\)

\(=a^2-\left(b+c\right)^2\)

Ta có \(a^2\ge0;\left(b+c\right)^2\ge0\)nên \(a^2-\left(b+c\right)^2\ge0\)

Khi đó hiệu trên luôn dương 

Vậy....

Bình luận (0)
BA
9 tháng 8 2018 lúc 20:51

Ta có a − b − c − 2bc = a − b + 2bc + c = a − b + c

Ta có a ≥ 0; b + c ≥ 0

nên a − b + c ≥ 0

Khi đó hiệu trên luôn dương 

Bình luận (0)
DH
Xem chi tiết
LA
Xem chi tiết
DH
27 tháng 9 2017 lúc 19:24

 a; b; c là độ dài 3 cạnh một tam giác nên \(a>b-c\) (bđt tam giác)

\(\Leftrightarrow a^2>\left(b-c\right)^2\)

\(\Leftrightarrow a^2-\left(b-c\right)^2>0\)

\(\Leftrightarrow a^2-\left(b^2-2bc+c^2\right)>0\)

\(\Leftrightarrow a^2-b^2-c^2+2bc>0\)(đpcm)

Bình luận (0)
PN
27 tháng 9 2017 lúc 19:30

Tui đang lười

Làm theo cái này

Câu hỏi của Đoàn Thanh Kim Kim - Toán lớp 7 - Học toán với OnlineMath

Vào câu hỏi tương tự cũng được. Ohe?

Bình luận (0)
NO
Xem chi tiết
H24
23 tháng 10 2021 lúc 13:04

\(a^2-b^2-c^2+2bc\)

\(=a^2-\left(b-c\right)^2\)

\(=\left(a-b+c\right)\left(a+b-c\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
NO
23 tháng 10 2021 lúc 13:05

r sao nữa hả bạn

Bình luận (0)
 Khách vãng lai đã xóa
H24
23 tháng 10 2021 lúc 13:08

Vì a,b,c là ba cạnh của tam giác nên a-b +c >0 và a+b-c >0

Suy ra đpcm

Bình luận (0)
 Khách vãng lai đã xóa