Những câu hỏi liên quan
MT
Xem chi tiết
N6
Xem chi tiết
NT
18 tháng 2 2022 lúc 16:08

\(A=\dfrac{\left(100+1\right)\cdot100}{2}=101\cdot50⋮2\)

Bình luận (0)
CT
18 tháng 2 2022 lúc 16:16

A=(1+100).100:2

A= 5050

Vì 5050:2=2525

=> A chia hết cho 2

Bình luận (0)
DT
Xem chi tiết
TP
Xem chi tiết
NM
1 tháng 11 2021 lúc 7:25

\(2+2^2+...+2^{100}\\ =\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\\ =2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\\ =\left(1+2\right)\left(2+2^3+...+2^{99}\right)\\ =3\left(2+2^3+...+2^{99}\right)⋮3\)

Bình luận (1)
PA
Xem chi tiết
TH
18 tháng 10 2015 lúc 17:13

(1+23)+(2+24)+...+(28+211)

9+2(1+23)+...+28(1+23)

9(1+2+...+28) chia hết cho 9

=>( 2^0+2^1+2^2 + ...+2^11) chia hết cho 9

 

Bình luận (0)
TH
18 tháng 10 2015 lúc 17:02

c)(5+52)+(53+54)+...+(599+5100)

5(1+5)+53(1+5)+...+599(1+5)

6(5+53+...+599) chia hết cho 3

Bình luận (0)
NL
Xem chi tiết
MP
21 tháng 9 2017 lúc 6:05

* ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)\(100\) số hạng

\(100⋮2;4;5\)\(100⋮̸3\)

ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)

\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\) (vì \(100⋮2\) )

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)

\(=2.3+2^3.3+...+2^{99}.3=3.\left(2+2^3+...+2^{99}\right)⋮3\)

vậy \(A\) chia hết cho \(3\) (1)

* ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)

\(=\left(2^1+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(+2^{97}+2^{98}+2^{99}+2^{100}\right)\) (vì \(100⋮4\) )

\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)

\(=2\left(1+2+4+8\right)+2^5\left(1+2+4+8\right)+...+2^{97}\left(1+2+4+8\right)\)

\(=2.15+2^5.15+...+2^{97}.15=15.\left(2+2^5+...+2^{97}\right)⋮15\)

vậy \(A\) chia hết cho \(15\) (2)

* ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)

\(=\left(2^1+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\) (vì \(100⋮5\) )

\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(=2.\left(1+2+4+8+16\right)+2^6\left(1+2+4+8+16\right)+...+2^{96}\left(1+2+4+8+16\right)\)

\(=2.31+2^6.31+...+2^{96}.31=31.\left(2+2^6+...+2^{96}\right)⋮31\)

vậy \(A\) chia hết cho \(31\) (3)

* ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)

\(=2^1+\left(2^2+2^3+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\) (vì \(100⋮̸3\) )

\(=2+2^2\left(1+2+2^2\right)+...+2^{98}\left(1+2+2^2\right)\)

\(=2+2^2\left(1+2+4\right)+...+2^{98}\left(1+2+4\right)\)

\(=2+2^2.7+...+2^{98}.7=2+7\left(2^2+...+2^{98}\right)\)

ta có : \(7\left(2^2+...+2^{98}\right)⋮7\) nhưng \(2⋮̸7\)

vậy \(A\) không chia hết cho \(7\) và số \(2< 7\)

nên số 2 là số dư khi \(A\) chia cho \(7\) (4)

từ (1);(2);(3) và (4) \(\Rightarrow\) (ĐPCM)

Bình luận (1)
KD
Xem chi tiết
KD
28 tháng 1 2016 lúc 18:43

giải bằng phép đồng dư giúp mk

Bình luận (0)
HT
Xem chi tiết
TP
18 tháng 11 2018 lúc 20:11


 

\(A=\left(2+2^2\right)+...+\left(2^{99}+2^{100}\right)\)

\(A=2\cdot\left(1+2\right)+...+2^{99}\cdot\left(1+2\right)\)

\(A=2\cdot3+...+2^{99}\cdot3\)

\(A=3\cdot\left(2+...+2^{99}\right)⋮3\left(đpcm\right)\)

2 ý kia tương tự

Bình luận (0)
NV
18 tháng 11 2018 lúc 20:13

Giải:

Đặt S=(2+2^2+2^3+...+2^100)

=2.(1+2+2^2+2^3+2^4)+2^6.(1+2+2^2+2^3+2^4)+...+(1+2+2^2+2^3+2^4).296

=2.31+26.31+...+296.31

=31.(2+26+...+296)\(⋮\)31

Bình luận (0)
BQ
18 tháng 11 2018 lúc 20:16

Ta có :

\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

=> \(A=(2+2^2)+(2^3+2^4)+...+(2^{99}+2^{100})\)

=> \(A=2(1+2)+2^3(1+2)+...+2^{99}(1+2)\)

=> \(A=2.3+2^3.3+...+2^{99}.3\)

=> \(A=(2+2^3+...+2^{99}).3\)chia hết cho 3             ( 1 )

Ta lại có :

\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

=> \(A=2(1+2+2^2+2^3+...+2^{98}+2^{99})\)chia hết cho 2       ( 2 )

Từ ( 1 ) và ( 2 ) ta có :

A chia hết cho 2 . 3 hay A chia hết cho 6

Ta có :

\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

=> ​\(A=\left(2+2^2+2^3+2^4+2^5\right)+....\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

=> \(A=2\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

=> \(A=2.31+...+2^{96}.31\)

=> \(A=\left(2+...+2^{96}\right)31\)chia hết cho 31

Bình luận (0)
BO
Xem chi tiết
TL
23 tháng 12 2015 lúc 19:29

dễ mà bạn bạn cứ nhóm 3số đầu tiên vào roi cu tiep tuc 3 so nhu vay

se duoc : (1+3+3^2)+(3^3+3^4+3^5)+...+(3^98+3^99+3^100)

=(1+3+3^2)+3^3.(1+3+3^2)+...+3 ^98.(1+3+3^2)

=13.3^3.13+...+3^98.13=13.(1+3^3+...+3^98) chia hết cho 13 

vậy M chia hết cho 13

tick cho mình nhé!

Bình luận (0)
KZ
24 tháng 12 2020 lúc 21:36
M= 1+3+3^2+3^3+...+3^98+3^99+3^100 M= (1+3+3^2)+(3^3+3^4+3^5)+...+(3^98+3^99+3^100) M= (1+3+3^2)+3^3(1+3+3^2)+...+3^98(1+3+3^2) M= 13+3^3.13+...+3^98.13 M= 13(3^3+...+3^98) Do 13 chia hết cho 13 nên M chia hết cho 13
Bình luận (0)
 Khách vãng lai đã xóa