Những câu hỏi liên quan
TP
Xem chi tiết
NT
4 tháng 9 2021 lúc 19:42

a: Ta có: \(2x^3-18x=0\)

\(\Leftrightarrow2x\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)

b: Ta có: \(\left(3x-2\right)\left(2x+1\right)-6x\left(x+2\right)=11\)

\(\Leftrightarrow6x^2+3x-4x-2-6x^2-12x=11\)

\(\Leftrightarrow-13x=13\)

hay x=-1

c: Ta có: \(\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)=3\left(1-x^2\right)\)

\(\Leftrightarrow x^3-3x^2+3x-1-x^3-8=3-3x^2\)

\(\Leftrightarrow3x=12\)

hay x=4

Bình luận (0)
EC
4 tháng 9 2021 lúc 19:47

a) 2x3-18x=0

⇔ 2x(x2-9)=0

⇔ 2x(x-3)(x+3)=0

⇔ \(\left\{{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)

b)(3x-1)(2x+1)-6x(x+2)=11

 

⇔ 6x2+x-1-6x2-12x=11

⇔ -11x=12

\(\Leftrightarrow x=-\dfrac{12}{11}\)

c) (x-1)3-(x+2).(x2-2x+4)=3.(1-x2)

⇔ x3-3x2+3x-1-x3-8-3+3x2=0

⇔ 3x=12

⇔   x=4

Bình luận (0)
KK
4 tháng 9 2021 lúc 20:29

c. (x - 1)3 - (x + 2)(x2 - 2x + 4) = 3(1 - x2)

<=> (x3 - 3x2 + 3x - 1) - (x3 - 2x2 + 4x + 2x2 - 4x + 8) = 3 - 3x2

<=> x3 - 3x2 + 3x - 1 - x3 + 2x2 - 4x - 2x2 + 4x - 8 = 3 - 3x2

<=> x3 - x3 - 3x2 + 2x2 - 2x2 + 3x2 + 3x - 4x + 4x = 3 + 1 + 8

<=> 3x = 12

<=> x = 4

Bình luận (0)
PS
Xem chi tiết
HV
24 tháng 12 2021 lúc 20:03

a,(2x-5^2)-4x(x-3)=0

=> 2x-25-4x2+12x=0

=>-4x2+14x-25=0

đề bài ý a sai nha

b, 6x2-7x=0

=>x(6x-7)=0

=>x=0 và 6x-7=0

=>x=0 và x=7/6

vậy x=0 và x=7/6

Bình luận (0)
H24
Xem chi tiết
NT
24 tháng 7 2023 lúc 21:11

a: \(\Leftrightarrow2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28\)

=>\(13\sqrt{2x}=28\)

=>căn 2x=28/13

=>2x=784/169

=>x=392/169

b: \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

=>2*căn x-5=4

=>căn x-5=2

=>x-5=4

=>x=9

c: =>\(\sqrt{x-2}\left(\sqrt{x+2}-1\right)=0\)

=>x-2=0 hoặc x+2=1

=>x=-1 hoặc x=2

Bình luận (0)
VD
Xem chi tiết
LL
22 tháng 9 2021 lúc 12:32

\(\left|x-3\right|+\left|x-\dfrac{1}{2}\right|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\x-\dfrac{1}{2}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=\dfrac{1}{2}\end{matrix}\right.\)( vô lý)

Vậy \(S=\varnothing\)

Bình luận (0)
NT
22 tháng 9 2021 lúc 14:41

b: \(\left|x-3\right|+\left|x-\dfrac{1}{2}\right|\ge0\forall x\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=3\\x=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

Bình luận (0)
NM
Xem chi tiết
LL
1 tháng 11 2021 lúc 8:54

a) \(\Rightarrow\left(2x-3\right)^2=49\)

\(\Rightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

b) \(\Rightarrow\left(x-5\right)\left(2x+7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-\dfrac{7}{2}\end{matrix}\right.\)

c) \(\Rightarrow x\left(x-5\right)+2\left(x-5\right)=0\Rightarrow\left(x-5\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

Bình luận (0)
LN
1 tháng 11 2021 lúc 9:00

a, ⇒ (2x - 3)2 = 49

    ⇒  (2x - 3)2 = \(\left(\pm7\right)^2\)

    ⇒ \(\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=10\\2x=-4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

b, ⇒ 2x.(x - 5) + 7.(x - 5) = 0

    ⇒ (x - 5).(2x + 7)  = 0

    ⇒ \(\left[{}\begin{matrix}x-5=0\\2x+7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\2x=-7\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-\dfrac{7}{2}\end{matrix}\right.\)

c, ⇒ x2 - 5x + 2x - 10 = 0

    ⇒ (x2 - 5x) + (2x - 10) = 0

    ⇒ x.(x - 5) +2.(x - 5)    = 0

    ⇒ (x - 5).(x + 2)=0

    \(\Rightarrow\left[{}\begin{matrix}x+2=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=5\end{matrix}\right.\)

Bình luận (0)
NL
Xem chi tiết
NM
6 tháng 11 2021 lúc 8:09

\(a,\Leftrightarrow\left(x+3\right)\left(x+3-x+3\right)=0\Leftrightarrow x=-3\\ b,\Leftrightarrow x=0\left(x^2+4>0\right)\)

Bình luận (0)
NA
6 tháng 11 2021 lúc 8:14

 

\(a,x^2+2.x.3+3^2-\left(x^2-3^2\right)=0\)

\(x^2+6x+9-x^2+9=0\)

\(6x+18=0\)

\(6x=-18\)

\(x=-3\)

Vậy x=-3

\(b,5x^3+20x=0\)

\(5x\left(x^2+4\right)=0\)

\(Th1:5x=0=>x=0\)

\(Th2:x^2+4=0\)

\(x^2=-4\)(vô lý)

Vậy x=0

Bình luận (0)
VD
Xem chi tiết
H9
10 tháng 8 2023 lúc 19:31

a) \(x\left(x-6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

b) \(\left(-7-x\right)\left(-x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)

c) \(\left(x+3\right)\left(x-7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)

d) \(\left(x-3\right)\left(x^2+12\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)

\(\Rightarrow x=3\)

e) \(\left(x+1\right)\left(2-x\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)

\(\Rightarrow-1\le x\le2\)

f) \(\left(x-3\right)\left(x-5\right)\le0\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow3\le x\le5\)

Bình luận (1)

a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)

d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3

Bình luận (0)

c) => \(\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)

Bình luận (0)
CI
Xem chi tiết
NT
22 tháng 10 2021 lúc 21:22

a: \(\left(2x-3\right)^2-49=0\)

\(\Leftrightarrow\left(2x+4\right)\left(2x-10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=5\end{matrix}\right.\)

Bình luận (0)
HP
22 tháng 10 2021 lúc 21:24

a. (2x - 3)2 - 49 = 0

<=> (2x - 3)2 - 72 = 0

<=> (2x - 3 + 7)(2x - 3 - 7) = 0

<=> (2x + 4)(2x - 10) = 0

<=> \(\left[{}\begin{matrix}2x+4=0\\2x-10=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=-2\\x=5\end{matrix}\right.\)

b. 2x(x - 5) - 7(5 - x) = 0

<=> 2x(x - 5) + 7(x - 5) = 0

<=> (2x + 7)(x - 5) = 0

<=> \(\left[{}\begin{matrix}2x+7=0\\x-5=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=5\end{matrix}\right.\)

c. x2 - 3x - 10 = 0

<=> x2 - 5x + 2x - 10 = 0

<=> x(x - 5) + 2(x - 5) = 0

<=> (x + 2)(x - 5) = 0

<=> \(\left[{}\begin{matrix}x+2=0\\x-5=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=-2\\x=5\end{matrix}\right.\)

Bình luận (2)
H24
22 tháng 10 2021 lúc 21:25

a, (2x - 3)2 - 49 = 0

(2x - 3)2 - 7= 0

(2x - 3 + 7)( 2x - 3 - 7) = 0

(2x + 4)( 2x - 10) = 0

=> 2x + 4 = 0                => 2x - 10 = 0

     2x       = - 4                   2x         = 10

       x       = - 2                     x         = 5

Bình luận (0)
PN
Xem chi tiết
H24
27 tháng 12 2020 lúc 8:11

a ,\(4x^2-\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(2x-x+3\right)\left(2x+x-3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(3x-3\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+3=0\\3x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\3x=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)

Vậy 

b,\(x^2-4+\left(x+2\right)^2=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x+2\right)^2=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x+2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy ...

Bình luận (0)