Những câu hỏi liên quan
LM
Xem chi tiết
TC
19 tháng 7 2021 lúc 18:31

undefined

Bình luận (0)
TC
19 tháng 7 2021 lúc 18:37

undefinedundefined

Bình luận (0)
TL
19 tháng 7 2021 lúc 18:40

bạn xem lại đề bài 1 là GTNN hay GTLN nha

Bình luận (0)
NH
Xem chi tiết
HK
Xem chi tiết
NT
22 tháng 9 2016 lúc 22:12

a) \(x^2+2x+3\)

\(=x^2+2x+1+2\)

\(=\left(x^2+2x+1\right)+2\)

\(=\left(x+1\right)^2+2\)

Ta có:

\(\left(x+1\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x+1\right)^2+2\ge2\)

Vậy MinA = 2 khi

\(\left(x+1\right)^2+2=2\)

\(\Leftrightarrow\left(x+1\right)^2=0\)

\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Bình luận (0)
LB
22 tháng 9 2016 lúc 20:30

MIN A = 2 <=> X= -1 
MIN B = 7/4 <=> X = -1/2
MAX E = 10<=> X= 3 
MAX P = `<=> X= 1

Bình luận (0)
TT
Xem chi tiết
DQ
Xem chi tiết
TY
Xem chi tiết
H24
5 tháng 11 2017 lúc 17:11

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

Bình luận (0)
DG
30 tháng 9 2018 lúc 5:18

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

Bình luận (0)
PL
Xem chi tiết
NL
26 tháng 7 2021 lúc 17:41

1.

Đặt \(x-2=t\ne0\Rightarrow x=t+2\)

\(B=\dfrac{4\left(t+2\right)^2-6\left(t+2\right)+1}{t^2}=\dfrac{4t^2+10t+5}{t^2}=\dfrac{5}{t^2}+\dfrac{2}{t}+4=5\left(\dfrac{1}{t}+\dfrac{1}{5}\right)^2+\dfrac{19}{5}\ge\dfrac{19}{5}\)

\(B_{min}=\dfrac{19}{5}\) khi \(t=-5\) hay \(x=-3\)

2.

Đặt \(x-1=t\ne0\Rightarrow x=t+1\)

\(C=\dfrac{\left(t+1\right)^2+4\left(t+1\right)-14}{t^2}=\dfrac{t^2+6t-9}{t^2}=-\dfrac{9}{t^2}+\dfrac{6}{t}+1=-\left(\dfrac{3}{t}-1\right)^2+2\le2\)

\(C_{max}=2\) khi \(t=3\) hay \(x=4\)

Bình luận (0)
PL
Xem chi tiết
AH
30 tháng 7 2021 lúc 16:35

1.

$x(x+2)(x+4)(x+6)+8$

$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$

$=a(a+8)+8$ (đặt $x^2+6x=a$)

$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$

Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$

Bình luận (0)
AH
30 tháng 7 2021 lúc 16:36

2.

$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$

$=5-(x^2+5x-6)(x^2+5x+6)$

$=5-[(x^2+5x)^2-6^2]$

$=41-(x^2+5x)^2\leq 41$

Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

Bình luận (0)
AH
30 tháng 7 2021 lúc 16:41

3.

Đặt $x+3=a; 7-x=b$ thì $a+b=10$ 

$C=a^4+b^4$

Áp dụng BĐT Bunhiacopxky:

$(a^4+b^4)(1+1)\geq (a^2+b^2)^2$

$\Rightarrow C\geq \frac{(a^2+b^2)^2}{2}$
$(a^2+b^2)(1+1)\geq (a+b)^2=100$

$\Rightarrow a^2+b^2\geq 50$

$\Rightarrow C\geq \frac{50^2}{2}=1250$

Vậy $C_{\min}=1250$

Giá trị này đạt tại $a=b=5\Leftrightarrow x=2$

 

 

Bình luận (0)
TA
Xem chi tiết
KN
5 tháng 8 2019 lúc 10:32

\(A=6x-x^2+5=-\left(x^2-6x-5\right)\)

\(=-\left(x^2-6x+9-14\right)=-\left[\left(x-3\right)^2-14\right]\)

\(=-\left[\left(x-3\right)^2\right]+14\le14\)

Vậy \(A_{max}=14\Leftrightarrow x=3\)

Bình luận (0)