Những câu hỏi liên quan
CP
Xem chi tiết
MH
Xem chi tiết
NM
21 tháng 12 2021 lúc 20:19

\(PT\Leftrightarrow m^2x-m^2-5mx+m+6x+2=0\\ \Leftrightarrow x\left(m^2-5m+6\right)=m^2-m-2\\ \Leftrightarrow x\left(m-2\right)\left(m-3\right)=\left(m-2\right)\left(m+1\right)\)

Với \(m\ne2;m\ne3\)

\(PT\Leftrightarrow x=\dfrac{\left(m-2\right)\left(m+1\right)}{\left(m-2\right)\left(m-3\right)}=\dfrac{m+1}{m-3}\)

Với \(m=2\Leftrightarrow0x=0\left(vsn\right)\)

Với \(m=3\Leftrightarrow0x=4\left(vn\right)\)

Vậy với \(m\ne2;m\ne3\) thì PT có nghiệm duy nhất \(x=\dfrac{m+1}{m-3}\), với \(m=2\) thì PT có vô số nghiệm và với \(m=3\) thì PT vô nghiệm

Bình luận (0)
LP
Xem chi tiết
HS
Xem chi tiết
NM
9 tháng 12 2021 lúc 17:38

Với \(m=0\)

\(PT\Leftrightarrow2x-3=0\Leftrightarrow x=\dfrac{3}{2}\)

Với \(m\ne0\)

\(\Delta'=\left(m-1\right)^2-m\left(m-3\right)=m+1\)

PT vô nghiệm \(\Leftrightarrow m+1< 0\Leftrightarrow m< -1\)

PT có nghiệm kép \(\Leftrightarrow m+1=0\Leftrightarrow m=-1\)

\(\Leftrightarrow x=-\dfrac{b'}{a}=\dfrac{m-1}{2m}\)

PT có 2 nghiệm phân biệt \(\Leftrightarrow m+1>0\Leftrightarrow m>-1;m\ne0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{m-1+\sqrt{m+1}}{m}\\x=\dfrac{m-1-\sqrt{m+1}}{m}\end{matrix}\right.\)

Bình luận (0)
SK
Xem chi tiết
H24
14 tháng 4 2017 lúc 14:18

Lời giải

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge m\left(1\right)\\\left(3x+2m\right)^2=\left(x-m\right)^2\left(2\right)\end{matrix}\right.\)

(2)\(\Leftrightarrow9x^2+12xm+4m^2=x^2-2mx+m^2\)

\(\Leftrightarrow8x^2+14mx+3m^2=0\)

\(\Delta'_x=49m^2-24m^2=25m^2\ge0\forall m\) => (2) luôn có nghiệm với mợi m

\(x=\dfrac{5\left|m\right|-7m}{8}\) (3)

so sánh (3) với (1)

\(\dfrac{5\left|m\right|-7m}{8}\ge m\Leftrightarrow\left|m\right|\ge3m\)(4)

m <0 hiển nhiên đúng

xét khi m\(\ge\)0

\(\left(4\right)\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\m^2\ge9m^2\end{matrix}\right.\)\(\Rightarrow m\le0\)\(\Leftrightarrow m=0\)

Biện luận

(I)với m <0 có hai nghiệm

\(\left\{{}\begin{matrix}x_1=\dfrac{-3m}{2}\\x_2=\dfrac{-m}{4}\end{matrix}\right.\)

(II) với m= 0 có nghiệm kép x=0

(III) m>0 vô nghiệm

 

 

Bình luận (0)
BV
3 tháng 5 2017 lúc 14:10

b) \(\left|2x+m\right|=\left|x-2m+2\right|\Leftrightarrow\left[{}\begin{matrix}2x+m=x-2m+2\left(1\right)\\2x+m=-\left(x-2m+2\right)\left(2\right)\end{matrix}\right.\)
Xét (1): \(2x+m=x-2m+2\Leftrightarrow x=-3m+2\).
Xét (2): \(2x+m=-\left(x-2m+2\right)\Leftrightarrow x=\dfrac{m-2}{3}\)
Biện luận:
Với mọi m phương trình đều có hai nghiệm:
\(x=-3m+2;x=\dfrac{m-2}{3}\).

Bình luận (0)
BV
3 tháng 5 2017 lúc 14:42

c) \(mx^2+\left(2m-1\right)x+m-2=0\)
- Với m = 0 phương trình trở thành:
\(0.x^2+\left(2.0-1\right)x+0-2=0\)\(\Leftrightarrow-x-2=0\)\(\Leftrightarrow x=-2\)
- Xét \(m\ne0\)
\(\Delta=\left(2m-1\right)^2-4m.\left(m-2\right)=4m+1\)
Nếu \(4m+1>0\Leftrightarrow m>\dfrac{-1}{4}\) phương trình có hai nghiệm phân biệt:
\(x_1=\dfrac{-\left(2m-1\right)+\sqrt{4m+1}}{2m}\);
\(x_2=\dfrac{-\left(2m-1\right)-\sqrt{4m+1}}{2m}\)
Nếu \(4m+1=0\Leftrightarrow m=\dfrac{-1}{4}\) phương trình có nghiệm kép:
\(x_1=x_2=\dfrac{-\left(2m-1\right)}{2m}=\dfrac{-\left(2.\dfrac{-1}{4}-1\right)}{2.\dfrac{-1}{4}}=-3\)
Nếu \(4m+1< 0\Leftrightarrow m< \dfrac{-1}{4}\) phương trình vô nghiệm.
Biện luận:
\(m=0\) phương trình có một nghiệm là x = -2.
\(m\ge\dfrac{-1}{4}\)\(m\ne0\) phương trình có hai nghiệm phân biệt:
\(x_1=\dfrac{-\left(2m-1\right)+\sqrt{4m+1}}{2m}\); \(x_2=\dfrac{-\left(2m-1\right)-\sqrt{4m+1}}{2m}\)
\(m\le\dfrac{-1}{4}\) phương trình có nghiệm kép:\(x_1=x_2=3\)

Bình luận (0)
NT
Xem chi tiết
NB
Xem chi tiết
HN
25 tháng 2 2016 lúc 9:08

\(x^2-\left(3m-2\right)x+2m\left(m-2\right)<0\) (1)

Tam thức bậc hai ở (1) luôn có hai nghiệm \(x_1=2m\)

và \(x_2=m-2\) với mọi \(m\in R\) Từ đó ta có 

- Khi 2m<m-2 hay m<-2 thì (1) có nghiệm 2m<x<m-2

- Khi 2m=m-2 hay m=-2 thì (1) vô nghiệm 

- Khi 2m>m-2 hay m>-2 thì (1) có nghiệm m-2<x<2m

Bình luận (0)
MN
Xem chi tiết
CD
Xem chi tiết