Những câu hỏi liên quan
DC
Xem chi tiết
H24
9 tháng 4 2020 lúc 14:14

Ta có : Q = x2 - 2xy -12x +y2 +12y + 36 + 5y2 -10y + 5 + 1976

               = [ x2 -2x(y + 6 ) + ( y + 6 )2 ] + 5 (y2 -2y +1 ) +1976

                = ( x- y - 6 )2 + 5 (y-1)2 + 1976

Vì ( x - y - 6)2 \(\ge\)0 với mọi x ; y ;5 .(y-1)2 \(\ge\)0 với mọi x ; y và 1976 > 0 

Nên biểu thức Q luôn nhận giá trị dương với mọi x ;y

Bình luận (0)
 Khách vãng lai đã xóa
TC
9 tháng 4 2020 lúc 18:34

Q=x2+6y2−2xy−12x+2y+2017

Q=(x2-2xy+y2)-(12x-12y)+36+(5y2-10y+5)+1976

=(x-y)2-12(x-y)+36+5(y2-2y+1)+1976

=[(x-y)2-12(x-y)+36]+5(y-1)2+1976

=(x-y-6)2+5(y-1)2+1976

do (x-y-6)2 ≥ 0 ∀ x,y

(y-1)2 ≥ 0 ∀ y

=> (x-y-6)2+5(y-1)2+1976 ≥ 1976

=> Q≥ 1976

=> MinA=1976 khi

y-1=0

=>y=1

x-y-6=0

=>x-1-6=0

=>x-7=0

=>x=7

Vậy GTNN của Q =1976 khi x=7 và y=1

Bình luận (0)
 Khách vãng lai đã xóa
SC
Xem chi tiết
KN
2 tháng 8 2019 lúc 17:19

a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

Bình luận (0)
KN
2 tháng 8 2019 lúc 17:22

c) \(C=4x-10-x^2=-\left(x^2-4x+10\right)\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2+6\right]\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2\right]-6\le-6< 0\forall x\)

Bình luận (0)
DT
Xem chi tiết
DD
Xem chi tiết
LD
11 tháng 9 2020 lúc 22:23

Bài 1.

( 1 - 3x )( x + 2 )

= 1( x + 2 ) - 3x( x + 2 )

= x + 2 - 3x2 - 6x 

= -3x2 - 5x + 2

= -3( x2 + 5/3x + 25/36 ) + 49/12

= -3( x + 5/6 )2 + 49/12 ≤ 49/12 ∀ x

Đẳng thức xảy ra <=> x + 5/6 = 0 => x = -5/6

Vậy GTLN của biểu thức = 49/12 <=> x = -5/6

Bài 2.

A = x2 + 2x + 7

= ( x2 + 2x + 1 ) + 6

= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x

=> A vô nghiệm ( > 0 mà :)) )

Bài 3.

M = x2 + 2x + 7

= ( x2 + 2x + 1 ) + 6

= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x

=> đpcm

Bài 4.

A = -x2 + 18x - 81

= -( x2 - 18x + 81 )

= -( x - 9 )2 ≤ 0 ∀ x 

=> đpcm 

Bài 5. ( sửa thành luôn không dương nhé ;-; )

F = -x2 - 4x - 5

= -( x2 + 4x + 4 ) - 1

= -( x + 2 )2 - 1 ≤ -1 < 0 ∀ x

=> đpcm 

Bình luận (0)
 Khách vãng lai đã xóa
XO
11 tháng 9 2020 lúc 22:25

Bài 2 

Ta có A = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0

Đa thức A vô nghiệm

Bại 3: Ta có M = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0 (đpcm)

Bài 4 Ta có A = -x2 + 18x - 81 = -(x2 - 18x + 81) = -(x - 9)2 \(\le0\)(đpcm)

Bài 5 Ta có F = -x2 - 4x - 5 = -(x2 + 4x + 5) = -(x2 + 4x + 4) - 1 = -(x + 2)2 - 1 \(\le\)-1 < 0 (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
PK
Xem chi tiết
MN
16 tháng 7 2021 lúc 8:48

\(A=x^2+x+1=x^2+2\cdot\dfrac{1}{2}\cdot x+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(A=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

Bình luận (0)
BT
16 tháng 7 2021 lúc 8:51

A= x2 + x + 1

A = x2 + 2. \(\dfrac{1}{2}\). x + (\(\dfrac{1}{2}\))2 +\(\dfrac{3}{4}\)

A = ( x + \(\dfrac{1}{2}\))2 + \(\dfrac{3}{4}\) ≥ \(\dfrac{3}{4}\)

Vậy, x2 + x + 1>0 với mọi x

Đúng thì like giúp mik nha. Thx bạn

Bình luận (0)
PG
16 tháng 7 2021 lúc 8:57

         \(x^2+x+1\)

\(=\)   \(x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}-\dfrac{1}{4}+1\)

\(=\)    \(\left(x+\dfrac{1}{2}\right)^2-\dfrac{1}{4}+1\)

\(=\)    \(\left(x+\dfrac{1}{2}\right)^2+\left(1-\dfrac{1}{4}\right)\)

\(=\)     \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Vì \(\left(x+\dfrac{1}{2}\right)^2\) luôn dương với mọi \(x\)     ( 1 )

mà cộng thêm 1 lượng \(\dfrac{3}{4}\)  luôn dương   ( 2 )

Từ ( 1 ) và ( 2 ):     ⇒    \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\) luôn dương

⇒   \(x^2+x+1\) luôn dương với mọi giá trị của x

Bình luận (0)
NA
Xem chi tiết
NT
7 tháng 10 2021 lúc 22:02

a: \(x^2-5x+10\)

\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}\)

\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{15}{4}>0\forall x\)

b: \(2x^2+8x+15\)

\(=2\left(x^2+4x+\dfrac{15}{2}\right)\)

\(=2\left(x^2+4x+4+\dfrac{7}{2}\right)\)

\(=2\left(x+2\right)^2+7>0\forall x\)

Bình luận (1)
LM
Xem chi tiết
DA
Xem chi tiết
HT
20 tháng 7 2016 lúc 13:54

a) \(A=x^2+2x+3=x^2+2x+1+2\)

\(=\left(x+1\right)^2+2\ge2\)

Vậy A luôn dương với mọi x

b) \(B=-x^2+4x-5=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-4x+2^2\right)-1\)

\(=-\left(x-2\right)^2-1\le-1\)

Vậy B luôn âm với mọi x

Bình luận (0)
DD
20 tháng 7 2016 lúc 14:01

a)\(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\ge2\)

Vậy x2 +2x+3 luôn dương.

b)\(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\le-1\)

Vậy -x2 +4x-5 luôn luôn âm.

Bình luận (0)
CN
7 tháng 8 2024 lúc 16:12

a.x2+ 2x+ 3

=x2+ 2.x.1+ 12- 12+ 3

= (x+1)2 -1+3

= (x+1)2+ 2

Ta có: (x+1)≥0

           (x+1)2+ 3≥ 3>0

⇒x2+ 2x+ 3>0 mọi x

Vậy x2+ 2x+3>0 mọi x

b. -x2+ 4x- 5

= - (x2- 4x +5)

= - (x2- 2.x.2+ 22- 22+ 5)

= - ((x- 2)2- 4+ 5)

= - ((x- 2)2+1)

= -(x- 2)2 -1

Ta có: (x-2)2 ≥0

         - (x-2)2 ≤0

         - (x-2)+1≤ 1

⇒ -x2+ 4x- 5 <0 mọi x

Vậy -x2+ 4x- 5 <0 mọi x

         

Bình luận (0)
H24
Xem chi tiết
H24
1 tháng 3 2018 lúc 13:45

Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến: 
a) 9x^2+12x-15 
=-(9x^2-12x+4+11) 
=-[(3x-2)^2+11] 
=-(3x-2)^2 - 11. 
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x 
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x. 
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x. 

b) -5 – (x-1)*(x+2) 
= -5-(x^2+x-2) 
=-5- (x^2+2x.1/2 +1/4 - 1/4-2) 
=-5-[(x-1/2)^2 -9/4] 
=-5-(x-1/2)^2 +9/4 
=-11/4 - (x-1/2)^2 
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x 
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x. 
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x. 

Bài 2) 
a) x^4+x^2+2 
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x 
suy ra x^4+x^2+2 >=2 
Hay x^4+x^2+2 luôn dương với mọi x. 

b) (x+3)*(x-11) + 2003 
= x^2-8x-33 +2003 
=x^2-8x+16b + 1954 
=(x-4)^2 + 1954 >=1954 
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến

Bình luận (0)
MD
1 tháng 3 2018 lúc 13:46

bị ''rảnh'' ak ? 

tự hỏi r tự trả lời

Bình luận (0)
AN
1 tháng 3 2018 lúc 13:47

1/ \(-9x^2+12x-15=\left(-9x^2+2.2.3x-4\right)-11\)

\(=-11-\left(3x-2\right)^2\le-11< 0\)

Câu b và câu 2 tương tự

Bình luận (0)