cho a,b ,c là độ dài 3 cạnh của tam giác và a+b+c=1 chứng minh rằng (1+1/a)(1+1/b)(1+1/c)>=64
Cho a,b,c là độ dài 3 cạnh của 1 tam giác.
Chứng minh rằng: 1/(a+b), 1/(a+c), 1/(b+c) cũng là dộ dài 3 cạnh của 1 tam giác
Cho a;b;c là độ dài 3 cạnh của 1 tam giác thỏa mãn a+b+c=3 Chứng minh rằng: a/b+b/c+c/a ≥ 1/a+1/b+1/c
Chứng minh rằng nếu a + b , b + c , c + a là độ dài ba cạnh của một tam giác thì \(\frac{1}{a+b},\frac{1}{b+c},\frac{1}{c+a}\) cũng là độ dài 3 cạnh của một tam giác
Ta có : a+b > c , b+c > a , c+a > b
Xét : \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+b+c}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)
Tương tự , ta cũng có : \(\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c};\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c}\)
Vậy ta có đpcm
Chú ý : a,b,c là độ dài ba cạnh của một tam giác chứ không phải a+b,b+c,c+a nhé :)
chứng minh rằng nếu a;b;c là độ dài 3 cạnh của một tam giác thì \(\frac{1}{a+b};\frac{1}{b+c};\frac{1}{c+a}\)cũng là độ dài 3 cạnh của một tam giác
cho a,b,c là độ dài 3 cạnh của 1 tam giác và abc=1. Chứng minh rằng: \(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge ab+bc+ca\)
Gọi a,b,c là độ dài 3 cạnh của tam giác ABC, biết rằng :
(1+ b/a)(1+ c/b)+(1+ a/c) =8
Chứng minh rằng tam giác ABC là tam giác đều
\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=8\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)
\(\Leftrightarrow\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{a^2b^2c^2}=64\)(*)
Ta có :\(\left(a+b\right)^2\ge4ab\) ; \(\left(b+c\right)^2\ge4bc\) ; \(\left(c+a\right)^2\ge4ca\)
Suy ra vế trái của (*) lớn hơn hoặc = 64. Dấu đẳng thức xảy ra khi a = b = c. Khi đó tg ABC đều.
chưngs minh tam giác abc đều mà sao lại nói tam giác abc ko đều
Cho a, b, c là độ dài 3 cạnh và x, y, z là độ dài 3 đường phân giác trong tam giác của các góc đối diện với cạnh đó. Chứng minh: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}>\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Xét tam giác ABC có ba cạnh BC = a, CA = b, AB = c. Phân giác của các góc A, B, C lần lượt là AD = x, BE = y, CF = z.
Kẻ DM // AB \((M\in AC)\).
Ta có \(\widehat{ADM}=\widehat{BAD}=\widehat{MAD}\Rightarrow\) Tam giác AMD cân tại M.
Do đó AM = MD.
Áp dụng định lý Thales với DM // AB ta có:
\(\dfrac{MD}{AB}=\dfrac{CM}{AC}=1-\dfrac{AM}{AC}=1-\dfrac{DM}{AC}\Rightarrow\dfrac{MD}{AB}+\dfrac{MD}{AC}=1\Rightarrow\dfrac{1}{MD}=\dfrac{1}{AB}+\dfrac{1}{AC}=\dfrac{1}{b}+\dfrac{1}{c}\).
Mặt khác theo bất đẳng thức tam giác ta có \(x=AD< AM+MD=2MD\Rightarrow MD>\dfrac{x}{2}\Rightarrow\dfrac{1}{MD}< \dfrac{2}{x}\Rightarrow\dfrac{1}{b}+\dfrac{1}{c}< \dfrac{2}{x}\).
Tương tự \(\dfrac{1}{c}+\dfrac{1}{a}< \dfrac{2}{y};\dfrac{1}{a}+\dfrac{1}{b}< \dfrac{2}{z}\).
Cộng vế với vế của các bđt trên rồi rút gọn ta có đpcm.
Cho a,b,c là độ dài 3 cạnh của 1 tam giác
Chứng minh: 1/(a+b-c)+1/(b+c-a)+1/(c+a-b)>=1/a+1/b+1/c
Ta có : \(\frac{1}{x}\)+ \(\frac{1}{y}\)\(\ge\)\(\frac{4}{xy}\)( với x,y dương)
Thật vậy: \(\frac{1}{x}\)+\(\frac{1}{y}\)\(\ge\frac{4}{x+y}\)
\(\Leftrightarrow\frac{y+x}{xy}\ge\frac{4}{x+y}\)
\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\) luôn đúng \(\forall\)x,y
Áp dụng bất đẳng thức trên ta được:
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)(Vì a,b,c là 3 cạnh \(\Delta\)nên a+b-c > 0 và b+c-a > 0 bđt \(\Delta\))
Tương tự có: \(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{2}{a}\)
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\)
Cộng từng vế 3 bđt trên ta được:
2(\(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\)\(\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)(ĐFCM)
CHÚC BẠN HỌC TỐT!
Cái phần cuối mình up lên nhưng không được chắc là do giới hạn chữ
Phần cuối bạn làm như thế này nhé:
C/m tương tự:\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{2}{a}\)
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\)
Cộng từng vế của 3 bđt trên ta được \(2\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)(ĐFCM)
CHÚC BẠN HỌC TỐT!
chứng minh rằng a,b,c là độ dài 3 cạnh của 1 tam giác thì
(b+c-a)(c+a-b)(a+b-c)\(\le\)abc
Đặt b+c-a=2x; c+a-b=2y; a+b-c=2z
hay \(a=y+z;b=x+z;c=x+y\) và \(\left\{{}\begin{matrix}x=\dfrac{b+c-a}{2}\\y=\dfrac{c+a-b}{2}\\z=\dfrac{a+b-c}{2}\end{matrix}\right.\)
Áp dụng BĐT Cosi, ta được:
\(\left\{{}\begin{matrix}x+y\ge2\sqrt{xy}\\y+z\ge2\sqrt{yz}\\x+z\ge2\sqrt{xz}\end{matrix}\right.\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8xyz\)
\(\Leftrightarrow abc\ge8\cdot\dfrac{b+c-a}{2}\cdot\dfrac{c+a-b}{2}\cdot\dfrac{a+b-c}{2}\)
\(\Leftrightarrow abc\ge\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\)
\(\Leftrightarrow\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\le abc\)(đpcm)
Ta có: \(\left(b+c-a\right)\left(c+a-b\right)=c^2-\left(a-b\right)^2\le c^2\);
\(\left(c+a-b\right)\left(a+b-c\right)=a^2-\left(b-c\right)^2\le a^2\);
\(\left(a+b-c\right)\left(b+c-a\right)=b^2-\left(c-a\right)^2\le b^2\).
Nhân vế với vế của các bđt trên với chú ý a + b - c > 0; b + c - a > 0; c + a - b > 0 ta có:
\(\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\le\left(abc\right)^2\)
\(\Leftrightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\).
Đẳng thức xảy ra khi và chỉ khi a = b = c.
Mở rộng: Nếu a, b, c là các số thực không âm thì bđt đó vẫn đúng.