Cho các số tự nhiên từ 0 đến 9.Hỏi có thể lập được bao nhiêu số có 5 chữ số chia hết cho 2;5;3;9
Từ các chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số tự nhiên có 3 chữ số khác nhau và chia hết cho 9?
Có thể lập được bao nhiêu số tự nhiên có hai chữ số khác nhau và không chia hết cho 9 từ các chữ số 0; 1; 5.
Cho các số tự nhiên 0; 1; 3; 5; 7; 9. Có thể lập được bao nhiêu số có 4 chữ số chia hết cho 5 từ 6 chữ số trên.
GỌI ABCD LÀ CÁC SỐ TN CẦN TÌM
TA CÓ ABCD\(⋮\)5
=>D\(\in\)(0;5)
NẾU D=0
=> ABCD=1350;1370;1390;1530;1730;1930;1950;1970;1790;1750;1570;1590;...
CÓ TẤT CẢ 60 SỐ CHIA HẾT CHO 5
NẾU D=5
=>ABCD=1305;1035;1795;1975;1075;1705;1375;1735;1905;1095;1935;1395;...
CÓ TẤT CẢ 48 SỐ CHIA HẾT CHO 5
VẬY TỪ CÁC SỐ 0;1;3;5;7;9 CÓ THỂ LẬP ĐC 108 SỐ CHIA HẾT CHO 5
Từ các chữ số 0, 1, 2, 3, 5, 6, 7, 8 có thể lập được bao nhiêu số tự nhiên gồm 3 chữ số khác nhau và số tự nhiên do chia hết cho 9.
Từ hai chữ số 0; 3 hỏi có thể lập được bao nhiêu số tự nhiên có hai chữ số và không chia hết cho 9
A. 1
B. 2
C. 3
D. Đáp án khác
Đáp án C
Ta lập được các số có 2 chữ số là: 30; 33. Vậy ta lập được 2 số tự nhiên có hai chữ số và không chia hết cho 9.
Từ các chữ số 0; 1; 2; …. ;9, có thể lập được tất cả bao nhiêu số tự nhiên nhỏ hơn 1000, chia hết cho 5 và gồm các chữ số khác nhau?
Các số tự nhiên nhỏ hơn 1000 gồm các số có 1 chữ số, có 2 chữ số hoặc 3 chữ số.
+ Số có 1 chữ số chia hết cho 5 là: 0 và 5 => có 2 số.
+ Số có 2 chữ số chia hết cho 5:
Hàng đơn vị là 0: chữ số hàng chục có 9 cách chọn.
Hàng đơn vị là 5: chữ số hàng chục có 8 cách chọn (khác 0).
=> Có \(9 + 8 = 17\) (số)
+ Số có 3 chữ số chia hết cho 5:
Hàng đơn vị là 0: chữ số hàng trăm có 9 cách chọn, hàng chục có 8 cách chọn.
Hàng đơn vị là 5: chữ số hàng trăm có 8 cách chọn, hàng chục có 8 cách chọn.
=> Có 9.8+8.8 = 136 (số)
Vậy có tất cả \(2 + 17 + 136 = 155\) số thỏa mãn ycbt.
Từ các chữ số từ 1 đến 9 có thể lập được bao nhiêu số tự nhiên có 3 chữ sô phân biệt chia hết cho 3
Các chữ số từ 1 đến 9 có tổng cộng 9 chữ số. Để số có ba chữ số chia hết cho 3, tổng của các chữ số đó cũng phải chia hết cho 3.
Có hai trường hợp để tìm số thỏa mãn:
Trường hợp tổng ba số là 9: Có thể lập ra các số sau: 369, 639, 693, 963.
Trường hợp tổng ba số là 18: Có thể lập ra các số sau: 189, 279, 369, 459, 549, 639, 729, 819, 918.
Vậy có tổng cộng 9 số tự nhiên có 3 chữ số phân biệt và chia hết cho 3.
Chia các chữ số từ 1 đến 9 làm 3 tập \(A=\left\{3;6;9\right\}\) ; \(B=\left\{1;4;7\right\}\) ; \(C=\left\{2;5;8\right\}\)
Số có 3 chữ số chia hết cho 3 khi:
TH1: 3 chữ số của nó thuộc cùng 1 tập \(\Rightarrow3.3!=18\) số
TH2: 3 chữ số của nó thuộc 3 tập phân biệt:
Chọn ra mỗi tập một chữ số có \(3.3.3=27\) cách
Hoán vị 3 chữ số có: \(3!=6\) cách
\(\Rightarrow27.6=162\) số
Như vậy có tổng cộng \(18+162=180\) số thỏa mãn
Từ các số 0,1,2,3,4,5,6.
a. Có thể lập được bao nhiêu số tự nhiên có 5 chữ số?
b. Có thể lập được bao nhiêu số chẵn có 5 chữ số khác nhau?
c. Có thể lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau và chia hết cho 5?
Từ các chữ số 0, 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau và chia hết cho 15.
A. 222
B.240
C. 200
D. 120
Đáp án A
Gọi số cần tìm là . Số mà chia hết cho thì phải chia hết cho 3 và 5.
Trường hợp 1. Số cần tìm có dạng , để chia hết cho thì a, b, c, d phải thuộc các tập sau
Do đó trong trường hợp này có số.