Những câu hỏi liên quan
DV
Xem chi tiết
H24
16 tháng 9 2015 lúc 17:20

Ta có : 
A = 1.2 + 2.3 + 3.4 + ... + 198.199 + 199.200 
= 1.(1 + 1) + 2.(2 + 1) + 3.(3 + 1) + ... + 198(198 + 1) + 199(199 + 1) 
= (1^2 + 1) + (2^2 + 2) + (3^2 + 3) + ... + (198^2 + 198) + (199^2 + 199) 
= (1 + 2 + 3 + 4....+ 198 + 199) + (1^2 + 2^2 + 3^2 + ...+ 198^2 + 199^2) 
* Dễ chứng minh : 
....1 + 2 + 3 +...+ n = n(n + 1)/2 
.... 1^2 + 2^2 +...+ n^2 = [n(n + 1)(2n + 1)]/6 
Suy ra : A = [199.(199 + 1)]/2 + [199.(199 + 1)(2.199 + 1)]/6 = 2666600

Bình luận (0)
LA
Xem chi tiết
PH
19 tháng 7 2016 lúc 20:13

ta có công thức 1.2+2.3+3.4+...+n.(n+1)=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

áp dụng công thức vào bài ta có: 1.2+2.3+3.4+...+2002.2003 = \(\frac{2002.2003.2004}{3}=2678684008\)

Bình luận (0)
NL
Xem chi tiết
NN
7 tháng 12 2023 lúc 20:54

 A = 1.2 + 2.3 + 3.4 + ... + 2013.2014 
3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 2013.2014.3 
Mà : 
1.2.3 = 1.2.3 
2.3.3 = 2.3.4 - 2.3.1 
3.4.3 = 3.4.5 - 3.4.2 

2012.2013.3 = 2012.2013.2014 - 2012.2013.2011 
2013.2014.3 = 2013.2014.2015 - 2013.2014.2012 
Cộng tất cả, vế theo vế ---> 3S = 2013.2014.2015 
---> A = 2013.2014.2015 / 3 = 2723058910.

của bạn đây

Bình luận (0)
BS
Xem chi tiết
PA
22 tháng 7 2021 lúc 15:31

`S = 1.2 + 2.3 + 3.4 + 4.5 + ... + 99.100.`

`3S =  1.2.3 + 2.3.(4-1) + 3.4.(5-4) + 4.5.(6-3) + ... + 99.100.(101-98)`

`3S =  1.2.3 + 2.3.4-1.2.3 + 3.4.5-4.5.6 + 4.5.6-3.4.5 + ... + 99.100.101-98.99.100`

`3S =  99.100.101`

`S = 33.100.101`

`S = 333300`

Bình luận (0)
KI
22 tháng 7 2021 lúc 15:35

3S=1.2(3-0)+2.3(4-1)+.....+99.100(101-98)

=1.2.3-0.1.2+2.3.4-1.2.3+4.5.6-2.3.4+....+99.100.101-98-99-100

=99.100.101

S=33.100.101

=333300

Bình luận (0)
TH
Xem chi tiết
TK
24 tháng 9 2017 lúc 20:49

Gọi tổng là A

3.A=1.2.3+2.3.3+3.4.3+...+99.100.3

=1.2.(3-0)+2.3(4-1)+3.4(5-2)+...+99.100(101-98)

=(1.2.3-0.1.2)+(2.3.4-1.2.3)+(3.4.5-2.3.4)+...+(99.100.101-98.99.100)

=99.100.101-0.1.2(vì những số khác giản ước)

=999900-0

=999900

A=999900:3=333300

Vậy A=333300

Bình luận (0)
H24
12 tháng 10 2021 lúc 22:05

Đặt P = 1.2+2.3+3.4+...+99.100

3P = 1.2.3+2.3.3+3.4.3+...+99.100+3

3P = 1.2 (3-0) +2.3(4-1)+3.4(5-2) +...+ 99.100( 101-98)

3P = ( 1.2.3 + 2.3.4 + 3.4.5 + 99.100.101 ) -( 0.1.2 + 1.2.3 + 2.3.4 + ....+ 98.99.100)

3P = 99.100.101 - 0.1.2

3P = 999900 - 0

3P = 999900

P = 999900 : 3

P = 333300

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
H24
13 tháng 7 2016 lúc 11:12

A= 1.2+2.3+3.4+...+2015.2016

3A=1.2.3+2.3.3+3.4.3+...+2015.2016.3

    =1.2.3+2.3.(4-1)+3.4.(5-2)+...+2015.2016.(2017-2014)

    =1.2.3-1.2.3+2.3.4-2.3.4+3.4.5+...-2014.2015.2016+2015.2016.2017

    =2015.2016.2017

A=2015.2016.2017:3=2731179360

Bình luận (0)
NN
Xem chi tiết
KA
2 tháng 10 2021 lúc 22:14

Gọi tổng là A

3.A=1.2.3+2.3.3+3.4.3+...+99.100.3

=1.2.(3-0)+2.3(4-1)+3.4(5-2)+...+99.100(101-98)

=(1.2.3-0.1.2)+(2.3.4-1.2.3)+(3.4.5-2.3.4)+...+(99.100.101-98.99.100)

=99.100.101-0.1.2(vì những số khác giản ước)

=999900-0

=999900

A=999900:3=333300

Vậy A=333300

Bình luận (0)
CR
Xem chi tiết
KL
7 tháng 2 2017 lúc 20:18

1.2 + 2.3 + 3.4 + ....... + 30.31

\(\frac{30.31.32}{3}\) = 9920

Bình luận (0)
CK
7 tháng 2 2017 lúc 20:18

1*2+2*3+3*4+...+30*31=2660

Bình luận (0)
H24
Xem chi tiết