Những câu hỏi liên quan
SX
Xem chi tiết
SX
Xem chi tiết
H24
20 tháng 10 2015 lúc 21:54

\(\frac{2}{8x-4x^2-5}\)

Xét mẫu:    \(8x-4x^2-5=-4x^2+8x-4-1=-\left(4x^2-8x+4\right)-1=-\left(2x-2\right)^2-1\)

 \(-\left(2x-2\right)^2\le0\Rightarrow-\left(2x-2\right)^2-1\le-1\)

 Nên  \(\frac{2}{8x-4x^2-5}\le\frac{2}{-1}\le-2\)

Vậy giá trị lớn nhất của \(\frac{2}{8x-4x^2-5}\)-2

Bình luận (0)
SX
Xem chi tiết
PA
13 tháng 1 2016 lúc 22:05

đề như thế này hả B=\(\frac{x-3}{2x-1}\) hayB=\(1-\frac{3}{2x-1}\)

  

Bình luận (0)
PA
13 tháng 1 2016 lúc 22:10

câu 1 nếu theo đề thì để B nguyên khi 2x-1 thuộc ước của 3 thay vào là xong

 

Bình luận (0)
PA
13 tháng 1 2016 lúc 22:11

à từ từ nếu như vậy thì cách mk sai đó

Bình luận (0)
SX
Xem chi tiết
MT
7 tháng 1 2016 lúc 14:43

A = \(\frac{x^2+6x+5}{x^2+2x-15}=\frac{x^2+x+5x+5}{x^2-3x+5x-15}=\frac{x.\left(x+1\right)+5.\left(x+1\right)}{x.\left(x-3\right)+5.\left(x-3\right)}=\frac{\left(x+1\right)\left(x+5\right)}{\left(x-3\right)\left(x+5\right)}\)

\(=\frac{x+1}{x-3}=\frac{x-3}{x-3}+\frac{4}{x-3}=1+\frac{4}{x-3}\)

 Để A nguyên thì \(1+\frac{4}{x-3}\text{ nguyên }\Rightarrow\frac{4}{x-3}\text{ nguyên }\Rightarrow x-3\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

Ta có bảng sau: 

x-31-12-24-4
x42517-1

Vậy x={-1;1;2;4;5;7} thì A nguyên

Bình luận (0)
CY
Xem chi tiết
GL
9 tháng 2 2020 lúc 19:46

a) Ta có \(x^2+2x+6=\left(x+1\right)^2+5\ge5\)

\(\Rightarrow P\le\frac{1}{5}\)

Dấu "=" xảy ra khi x=-1

Bình luận (0)
 Khách vãng lai đã xóa
GL
9 tháng 2 2020 lúc 19:50

\(Q=1-\frac{1}{x+1}+\frac{1}{\left(x+1\right)^2}\)

Đặt \(a=\frac{1}{x+1}\)

\(\Rightarrow Q=1-a+a^2=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra khi \(a=\frac{1}{2}\Rightarrow x=1\)

Bình luận (0)
 Khách vãng lai đã xóa
KN
9 tháng 2 2020 lúc 19:54

\(P=\frac{1}{x^2+2x+6}\)

để pmin thì \(x^2+2x+6max\)

\(\frac{1}{x^2+2x+6}=\frac{1}{\left(x+1\right)^2+5}\)lớn hơn hoặc bằng 1/5 

=>Pmin=1/5 khi và chỉ khi x=-1

Bình luận (0)
 Khách vãng lai đã xóa
SX
Xem chi tiết
PN
11 tháng 1 2016 lúc 9:23

\(\left(\text{*}\right)\) Tìm giá trị lớn nhất của biểu thức sau:

Ta có:

\(A=\frac{x^2+1}{x^2-x+1}=\frac{2\left(x^2-x+1\right)-\left(x^2-2x+1\right)}{x^2-x+1}=2-\frac{\left(x-1\right)^2}{x^2-x+1}\le2\) với mọi  \(x\)

Dấu   \("="\)  xảy ra  \(\Leftrightarrow\) \(\left(x-1\right)^2=0\)  \(\Leftrightarrow\)  \(x-1=0\)  \(\Leftrightarrow\) \(x=1\)

Vậy,   \(A_{max}=2\) \(\Leftrightarrow\) \(x=1\)

                                 -------------------------------------------------

\(B=\frac{3-4x}{x^2+1}=\frac{4\left(x^2+1\right)-\left(4x^2+4x+1\right)}{x^2+1}=4-\frac{\left(2x+1\right)^2}{x^2+1}\le4\) với mọi  \(x\)

Dấu   \("="\)  xảy ra  \(\Leftrightarrow\) \(\left(2x+1\right)^2=0\)  \(\Leftrightarrow\) \(2x+1=0\)  \(\Leftrightarrow\)  \(x=-\frac{1}{2}\)

Vậy,   \(B_{max}=4\)  \(\Leftrightarrow\)  \(x=-\frac{1}{2}\)

                              ____________________________________

 \(\left(\text{*}\text{*}\right)\)  Tìm giá trị nhỏ nhất của biểu thức sau:

Từ \(A=\frac{x^2+1}{x^2-x+1}\)

\(\Rightarrow\) \(3A=\frac{3x^2+3}{x^2-x+1}=\frac{\left(x^2+2x+1\right)+2\left(x^2-x+1\right)}{x^2-x+1}=\frac{\left(x+1\right)^2}{x^2-x+1}+2\ge2\)  với mọi  \(x\)

Vì   \(3A\ge2\) nên  \(A\ge\frac{2}{3}\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\) \(\left(x+1\right)^2=0\)  \(\Leftrightarrow\)  \(x+1=0\)  \(\Leftrightarrow\) \(x=-1\)

Vậy,   \(A_{min}=\frac{2}{3}\)  \(\Leftrightarrow\)  \(x=-1\)

Câu b) tự giải

Bình luận (0)
SX
Xem chi tiết
NT
11 tháng 1 2016 lúc 21:50

\(\frac{4x^2-6x+5}{2x-1}=2x-2+\frac{3}{2x-1}\)

Để biểu thức có giá trị nguyên thì \(\left(2x-1\right)\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

Với 2x - 1 = 1 => 2x = 2 => x = 1

      2x - 1 = -1 => 2x = 0 => x = 0

      2x - 1 = 3 => 2x = 4 => x = 2

      2x - 1 = -3 => 2x = -2 => x = -1

Vậy x = {1;0;2;-1}

Bình luận (0)
YT
Xem chi tiết
NT
10 tháng 2 2023 lúc 21:36

a: ĐKXĐ: x+1<>0

=>x<>-1

b: x^2+x=0

=>x=0(nhận) hoặc x=-1(loại)

Khi x=0 thì \(A=\dfrac{2\cdot0-3}{0+1}=-3\)

c: Để A nguyên thì 2x-3 chia hết cho x+1

=>2x+2-5 chia hết cho x+1

=>-5 chia hết cho x+1

=>\(x+1\in\left\{1;-1;5;-5\right\}\)

=>\(x\in\left\{0;-2;4;-6\right\}\)

d: Để A>0 thì (2x-3)/(x+1)>0

=>x>3/2 hoặc x<-1

Bình luận (0)
SX
Xem chi tiết
KM
Xem chi tiết
HH
14 tháng 4 2018 lúc 22:58

Ta có \(\left|x+1\right|\ge0\)với mọi giá trị của x

và \(\left|x-2018\right|\ge0\)với mọi giá trị của x

=> \(\left|x+1\right|+\left|x-2018\right|\ge0\)với mọi giá trị của x

Vậy GTNN của A là 0.

Bình luận (0)
PU
14 tháng 4 2018 lúc 22:41

Gtnn của A  là 2017

Bình luận (0)