Những câu hỏi liên quan
TA
Xem chi tiết
H24
10 tháng 8 2023 lúc 9:41

\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)

Chứng minh: \(VP=\left(x+y\right)\left(x^2-xy+y^2\right)=x^3-x^2y+xy^2+x^2y-xy^2+y^3=x^3+y^3=VP\)

Áp dụng vào bài 

--------------------------------------------------

Ta có \(a+b+c=0\Leftrightarrow-c=a+b\)

\(\Rightarrow c^2=\left(a+b\right)\left(a+b\right)=a^2+2ab+b^2\)

Xét \(a^3+b^3+a^2c+b^2c-abc\)

\(=a^3+b^3+c\left(a^2+b^2+2ab\right)-3abc\)

\(=a^3+b^3+c.c^2-3abc\)

\(=a^3+b^3+c^3-3abc\)

\(=a^3+a^2b+2a^2b+2ab^2+ab^2+b^3-3a^2b-3ab^2+c^3-3abc\)

\(=a^2\left(a+b\right)+2ab\left(a+b\right)+b^2\left(a+b\right)+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b\right)\left(a^2+2ab+b^2\right)+c^3\) ( do a+b+c=0 )

\(=\left(a+b\right)\left[a\left(a+b\right)+b\left(a+b\right)\right]+c^3\)

\(=\left(a+b\right)\left(a+b\right)\left(a+b\right)+c^3=\left(a+b\right)^3+c^3\)

( Áp dụng \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\) )

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]=0\) ( do a+b+c=0 )

Vậy \(a^3+b^3+a^2c+b^2c-abc=0\)

Bình luận (0)
NT
Xem chi tiết
AH
1 tháng 2 2017 lúc 21:09

Bài 1

Đặt \(A=a^3+b^3+c^3-3(a-1)(b-1)(c-1)\)

Biến đổi:

\(A=a^3+b^3+c^3-3[abc-(ab+bc+ac)+a+b+c-1]=a^3+b^3+c^3-3abc+3(ab+bc+ac)-6\)

\(A=(a+b+c)^3-3[(a+b)(b+c)(c+a)+abc]-6+3(ab+bc+ac)\)

\(A=21-3(a+b+c)(ab+bc+ac)+3(ab+bc+ac)=21-6(ab+bc+ac)\)

Áp dụng BĐT Am-Gm:

\(3(ab+bc+ac)\leq (a+b+c)^2=9\Rightarrow ab+bc+ac\leq 3\)

\(\Rightarrow A\geq 21-6.3=3\). Dấu bằng xảy ra khi $a=b=c=1$

\(0\leq a,b,c\leq2\Rightarrow (a-2)(b-2)(c-2)\leq 0\)

\(\Leftrightarrow abc-2(ab+bc+ac)+4\leq 0\Leftrightarrow 2(ab+bc+ac)\geq 4+abc\geq 0\Rightarrow ab+bc+ac\geq 2\)

\(\Rightarrow A\leq 21-6.2=9\). Dấu bằng xảy ra khi $(a,b,c)=(0,1,2)$ và các hoán vị.

Bình luận (0)
AH
1 tháng 2 2017 lúc 21:20

Bài 2a)

Ta có

\(A=a^2+b^2+c^2=(a+1)^2+(b+1)^2+(c+1)^2-3-2(a+b+c)\)

\(\Leftrightarrow A=(a+b+c+3)^2-2[(a+1)(b+1)+(b+1)(c+1)+(c+1)(a+1)]-3\)

\(\Leftrightarrow A=6-2[(a+1)(b+1)+(b+1)(c+1)+(c+1)(a+1)]\)

\(-1\leq a,b,c\leq 2\Rightarrow a+1,b+1,c+1\geq 0\)

\(\Rightarrow (a+1)(b+1)+(b+1)(c+1)+(c+1)(a+1)\geq 0\Rightarrow A\leq 6\)

Dấu bằng xảy ra khi \((a,b,c)=(-1,-1,2)\) và các hoán vị của nó

Bình luận (0)
AH
1 tháng 2 2017 lúc 22:16

Câu 2b)

Đặt \((a,b,c)\mapsto(x-1,y-1,z-1)\)

Khi đó ta có \(0\leq x,y,z\leq 3,x+y+z=3\)

Cần cm

\(2(x-1)(y-1)(z-1)\leq (x-1)^2+(y-1)^2+(z-1)^2\leq 2(x-1)(y-1)(z-1)+2\)

Vế đầu:

Khai triển kết hợp với $x+y+z=3$ thì \(\text{BĐT}\Leftrightarrow xyz\leq 1\)

Điều này đúng vì theo AM-GM cho số không âm thì \(3=x+y+z\geq 3\sqrt[3]{xyz}\rightarrow xyz\leq 1\)

Ta có đpcm. Dấu bằng xảy ra khi $x=y=z=1$ hay $a=b=c=0$

Vế sau:

Tương tự phần trên \(\text{BĐT}\Leftrightarrow xyz\geq 0\) ( luôn đúng do $x,y,z\geq 0$)

Dấu bằng xảy ra khi $(x,y,z)=(2,-1,-1)$ và hoán vị

Lưu ý: "Khi" khác với "khi và chỉ khi"- nghĩa là chỉ nêu 1TH chứ chưa quét hết toàn bộ điểm rơi

Bình luận (0)
LQ
Xem chi tiết
PN
6 tháng 4 2016 lúc 22:51

abc = 1 mới đúng nhớ, nếu đúng thế thì mình mới giải!

Bình luận (0)
DL
Xem chi tiết
CV
Xem chi tiết
H24
26 tháng 5 2017 lúc 16:37

2) \(VT=\left(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\right)+3\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)

Xét \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\)

Áp dụng bất đẳng thức Cauchy dạng phân thức 

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{3}{2}\) (1) 

Xét \(3\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

Áp dụng bất đẳng thức Cauchy dạng phân thức 

\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{\left(1+1+1\right)^2}{2\left(a+b+c\right)}=\frac{3}{2}\)

\(\Rightarrow3\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge3.\frac{3}{2}=\frac{9}{2}\) (2) 

Từ (1) và (2) 

\(\Rightarrow VT\ge\frac{9}{2}+\frac{3}{2}=6\) ( đpcm ) 

Dấu " = " xảy ra khi \(a=b=c=1\)

Bình luận (0)
CV
26 tháng 5 2017 lúc 21:17

cám ơn nhiều.

Bình luận (0)
DL
Xem chi tiết
TN
22 tháng 8 2019 lúc 20:12

xin chao

Bình luận (0)
H24
Xem chi tiết
LL
Xem chi tiết
TH
Xem chi tiết
KB
4 tháng 12 2017 lúc 18:51

Vì a+b+c=0\(\Rightarrow c=-\left(a+b\right)\)

Ta có:\(a^3+b^3+c\left(a^2+b^2\right)=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2+b^2\right)\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)-\left(a+b\right)\left(a^2+b^2\right)=\left(a+b\right).\left(-ab\right)=\left(-c\right).\left(-ab\right)=abc\)

\(\Rightarrowđpcm\)

Bình luận (0)