§1. Bất đẳng thức

NT

Bài 1:Cho 0<=a;b;c<=2.a+b+c=3

CM:3<=a^3+b^3+c^3-3(a-1)(b-1)(c-1)<=9

Bài 2: Cho -1<=a;b;c<=2.a+b+c=0.CM:

a,a^2+b^2+c^2<=6

b,2abc<=a^2+b^2+c^2<=2abc+2

c,a^2+b^2+c^2<=8-abc

AH
1 tháng 2 2017 lúc 21:09

Bài 1

Đặt \(A=a^3+b^3+c^3-3(a-1)(b-1)(c-1)\)

Biến đổi:

\(A=a^3+b^3+c^3-3[abc-(ab+bc+ac)+a+b+c-1]=a^3+b^3+c^3-3abc+3(ab+bc+ac)-6\)

\(A=(a+b+c)^3-3[(a+b)(b+c)(c+a)+abc]-6+3(ab+bc+ac)\)

\(A=21-3(a+b+c)(ab+bc+ac)+3(ab+bc+ac)=21-6(ab+bc+ac)\)

Áp dụng BĐT Am-Gm:

\(3(ab+bc+ac)\leq (a+b+c)^2=9\Rightarrow ab+bc+ac\leq 3\)

\(\Rightarrow A\geq 21-6.3=3\). Dấu bằng xảy ra khi $a=b=c=1$

\(0\leq a,b,c\leq2\Rightarrow (a-2)(b-2)(c-2)\leq 0\)

\(\Leftrightarrow abc-2(ab+bc+ac)+4\leq 0\Leftrightarrow 2(ab+bc+ac)\geq 4+abc\geq 0\Rightarrow ab+bc+ac\geq 2\)

\(\Rightarrow A\leq 21-6.2=9\). Dấu bằng xảy ra khi $(a,b,c)=(0,1,2)$ và các hoán vị.

Bình luận (0)
AH
1 tháng 2 2017 lúc 21:20

Bài 2a)

Ta có

\(A=a^2+b^2+c^2=(a+1)^2+(b+1)^2+(c+1)^2-3-2(a+b+c)\)

\(\Leftrightarrow A=(a+b+c+3)^2-2[(a+1)(b+1)+(b+1)(c+1)+(c+1)(a+1)]-3\)

\(\Leftrightarrow A=6-2[(a+1)(b+1)+(b+1)(c+1)+(c+1)(a+1)]\)

\(-1\leq a,b,c\leq 2\Rightarrow a+1,b+1,c+1\geq 0\)

\(\Rightarrow (a+1)(b+1)+(b+1)(c+1)+(c+1)(a+1)\geq 0\Rightarrow A\leq 6\)

Dấu bằng xảy ra khi \((a,b,c)=(-1,-1,2)\) và các hoán vị của nó

Bình luận (0)
AH
1 tháng 2 2017 lúc 22:16

Câu 2b)

Đặt \((a,b,c)\mapsto(x-1,y-1,z-1)\)

Khi đó ta có \(0\leq x,y,z\leq 3,x+y+z=3\)

Cần cm

\(2(x-1)(y-1)(z-1)\leq (x-1)^2+(y-1)^2+(z-1)^2\leq 2(x-1)(y-1)(z-1)+2\)

Vế đầu:

Khai triển kết hợp với $x+y+z=3$ thì \(\text{BĐT}\Leftrightarrow xyz\leq 1\)

Điều này đúng vì theo AM-GM cho số không âm thì \(3=x+y+z\geq 3\sqrt[3]{xyz}\rightarrow xyz\leq 1\)

Ta có đpcm. Dấu bằng xảy ra khi $x=y=z=1$ hay $a=b=c=0$

Vế sau:

Tương tự phần trên \(\text{BĐT}\Leftrightarrow xyz\geq 0\) ( luôn đúng do $x,y,z\geq 0$)

Dấu bằng xảy ra khi $(x,y,z)=(2,-1,-1)$ và hoán vị

Lưu ý: "Khi" khác với "khi và chỉ khi"- nghĩa là chỉ nêu 1TH chứ chưa quét hết toàn bộ điểm rơi

Bình luận (0)
AH
1 tháng 2 2017 lúc 22:34

Câu 2c

Sử dụng cách đặt giống như câu 2b

BĐT cần chứng minh tương đương với
\((x-1)^2+(y-1)^2+(z-1)^2+(x-1)(y-1)(z-1)\leq 8\)

\(\Leftrightarrow xyz\leq 3(xy+yz+xz)\)

Áp dụng BĐT AM-GM cho ba số $x,y,z$ không âm

\(3(xy+yz+xz)=(x+y+z)(xy+yz+xz)\geq 9xyz\geq xyz\)

Do đó ta có đpcm

Dấu bằng xảy ra khi $(x,y,z)=(2,-1,-1)$ và hoán vị của nó.

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
PL
Xem chi tiết
TV
Xem chi tiết
NY
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết