TA

Cho a+b+c=0 . CM : a^3 + b^3 + a^2.c + b^2.c - abc = 0

H24
10 tháng 8 2023 lúc 9:41

\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)

Chứng minh: \(VP=\left(x+y\right)\left(x^2-xy+y^2\right)=x^3-x^2y+xy^2+x^2y-xy^2+y^3=x^3+y^3=VP\)

Áp dụng vào bài 

--------------------------------------------------

Ta có \(a+b+c=0\Leftrightarrow-c=a+b\)

\(\Rightarrow c^2=\left(a+b\right)\left(a+b\right)=a^2+2ab+b^2\)

Xét \(a^3+b^3+a^2c+b^2c-abc\)

\(=a^3+b^3+c\left(a^2+b^2+2ab\right)-3abc\)

\(=a^3+b^3+c.c^2-3abc\)

\(=a^3+b^3+c^3-3abc\)

\(=a^3+a^2b+2a^2b+2ab^2+ab^2+b^3-3a^2b-3ab^2+c^3-3abc\)

\(=a^2\left(a+b\right)+2ab\left(a+b\right)+b^2\left(a+b\right)+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b\right)\left(a^2+2ab+b^2\right)+c^3\) ( do a+b+c=0 )

\(=\left(a+b\right)\left[a\left(a+b\right)+b\left(a+b\right)\right]+c^3\)

\(=\left(a+b\right)\left(a+b\right)\left(a+b\right)+c^3=\left(a+b\right)^3+c^3\)

( Áp dụng \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\) )

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]=0\) ( do a+b+c=0 )

Vậy \(a^3+b^3+a^2c+b^2c-abc=0\)

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
TV
Xem chi tiết
NB
Xem chi tiết
NH
Xem chi tiết
VT
Xem chi tiết
CT
Xem chi tiết
TD
Xem chi tiết
H24
Xem chi tiết
HG
Xem chi tiết