Những câu hỏi liên quan
VT
Xem chi tiết
PT
22 tháng 9 2017 lúc 5:28

\(=a^3+b^3+a^3-b^3\)

\(=2a^3\)

Bình luận (0)
PB
Xem chi tiết
CT
31 tháng 7 2019 lúc 15:32

Biến đổi vế trái ta có:

VT = (a + b)( a 2  – ab +  b 2 ) + (a – b)( a 2  + ab +  b 2 )

=  a 3  +  b 3  +  a 3  –  b 3  = 2 a 3  = VP

Vế trái bằng vế phải nên đẳng thức được chứng minh.

Bình luận (0)
NN
Xem chi tiết
TL
17 tháng 7 2021 lúc 22:01

VP `=(a+b)(a^2-ab+b^2)`

`=a^3-a^2b+ab^2+a^2b-ab^2+b^3`

`=a^3+(a^2b-a^2b)+(ab^2-ab^2)+b^3`

`=a^3+b^3`

.

VP `=(a-b)(a^2+ab+b^2)`

`=a^3+a^2b+ab^2-a^2b-ab^2-b^3`

`=a^3+(a^2b-a^2b)+(ab^2-ab^2)-b^3`

`=a^3-b^3`

Bình luận (0)
DB
17 tháng 7 2021 lúc 21:56

đúng rồi mà

Bình luận (2)
NT
17 tháng 7 2021 lúc 22:03

Ta có: \(a^3+b^3\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=\left(a+b\right)\left(a^2+2ab+b^2-3ab\right)\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)\)

Ta có: \(a^3-b^3\)

\(=\left(a-b\right)^3+3ab\left(a-b\right)\)

\(=\left(a-b\right)\left(a^2-2ab+b^2+3ab\right)\)

\(=\left(a-b\right)\left(a^2+ab+b^2\right)\)

Bình luận (0)
DA
Xem chi tiết
PB
17 tháng 1 2022 lúc 16:23
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Bình luận (0)
 Khách vãng lai đã xóa
TD
Xem chi tiết
DT
Xem chi tiết
NT
4 tháng 1 2022 lúc 20:08

b: =>a=5-b

\(\Leftrightarrow\left(5-b\right)^2+b^2=13\)

\(\Leftrightarrow2b^2-10b+25-13=0\)

\(\Leftrightarrow\left(b-2\right)\left(b-3\right)=0\)

hay \(b\in\left\{2;3\right\}\)

\(\Leftrightarrow a\in\left\{3;2\right\}\)

Bình luận (0)
H24
4 tháng 1 2022 lúc 20:45

b: =>a=5-b

⇔(5−b)2+b2=13⇔(5−b)2+b2=13

⇔2b2−10b+25−13=0⇔2b2−10b+25−13=0

⇔(b−2)(b−3)=0⇔(b−2)(b−3)=0

hay b∈{2;3}b∈{2;3}

⇔a∈{3;2}⇔a∈{3;2}

 

Bình luận (0)
SC
Xem chi tiết
NT
13 tháng 6 2023 lúc 8:43

2:

a: =>a^2+2ab+b^2-2a^2-2b^2<=0

=>-(a^2-2ab+b^2)<=0

=>(a-b)^2>=0(luôn đúng)

b; =>a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2<=0

=>-(2a^2+2b^2+2c^2-2ab-2ac-2bc)<=0

=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)

Bình luận (0)
KM
Xem chi tiết
NN
Xem chi tiết
LA
8 tháng 8 2021 lúc 20:49

Ta có: \(VP=\left(a-b\right)\left(a^2+ab+b^2\right)-3ab\left(a-b\right)\)

\(=a^3-b^3-3a^2b+3ab^2\)

\(=a^3-3a^2b+3ab^2-b^3=\left(a-b\right)^3=VT\)

⇒ đpcm

Bình luận (0)
NT
8 tháng 8 2021 lúc 21:02

\(\left(a-b\right)\left(a^2+ab+b^2\right)-3ab\left(a-b\right)\)

\(=\left(a-b\right)\left(a^2+ab+b^2-3ab\right)\)

\(=\left(a-b\right)^3\)

Bình luận (0)
VK
Xem chi tiết
EC
3 tháng 7 2019 lúc 21:50

a) VT = (a - 1)(a - 2) + (a - 3)(a + 4) - (2a2 + 5a - 34)

         = a2 - 2a - a + 2 + a2 + 4a - 3a - 12  - 2a2 - 5a + 34

       = (a2 + a2 - 2a2) - (2a + a - 4a + 3a + 5a) + (2 - 12 + 34)

        =  -7a + 24

=> VT = VP

=> đpcm

b) VT = (a - b)(a2 + ab + b2) - (a + b)(a2 - ab + b2)

         = (a3 - b3) - (a3 + b3)

         = a3 - b3 - a3 - b3

           = -2b

=> VT = VP

=> Đpcm

Câu b bn xem đề lại (a + b)(a2 - ab + b2) ko phải là (a + b)(a2 - ab - b2)

Bình luận (0)