c)5^x+1-5^x=20 c)2^x+2^x+4=544 c)4^2x+1+4^2x=80 c)3^2x+2+3^2x+1=108 c)7^x+3-7^x+1=16464
1)4x-20=0 ; 2) 5x+15=0 ; 3) 3x-5=7x+2 ; 4) 4x-(x-1)=2(1+x) ; 5) x2 -2x=0 ; 6) 2(3x-5)-3(x-2)=3(x+4) ; 7) (x+3)(2x-7)=0
8) 5x(x-3)+2x-6=0 ; 9) (3x-1)(2x-1)-(3x-1)(x+2)=0
10)|2x-1|+1=8 ; 11) |x-2|=3x+1 ; 12) |2x|=21-x
Giải các phương trình nha mọi người ^_^
a,4x-10=0 b, 7-3x=9-x c, 2x-(3-5x) = 4(x+3)
d, 5-(6-x)=4(3-2x) e, 4(x+3)=-7x+17 f, 5(x-3) - 4=2(x-1)+7
g, 5(x-3)-4=2(x-1)+7 h,4(3x-2)-3(x-4)=7x+20
`a,4x-10=0 `
`<=> 4x=10`
`<=>x=10/4`
`<=>x=5/2`
`b, 7-3x=9-x `
`<=>-3x+x=9-7`
`<=>-2x=2`
`<=>x=-1`
`c, 2x-(3-5x) = 4(x+3)`
`<=>2x-3+5x=4x+12`
`<=>2x+5x-4x=12+3`
`<=>3x=15`
`<=>x=5`
`d, 5-(6-x)=4(3-2x) `
`<=>5-6+x=12-8x`
`<=>x+8x=12-5+6`
`<=>9x=13`
`<=>x=13/9`
`e, 4(x+3)=-7x+17 `
`<=>4x+12=-7x+17`
`<=>4x+7x=17-12`
`<=>11x=5`
`<=>x=5/11`
`f, 5(x-3) - 4=2(x-1)+7`
`<=>5x-15-4=2x-2+7`
`<=>5x-2x=15+4-2+7`
`<=>3x=24`
`<=>x=8`
`g, 5(x-3)-4=2(x-1)+7 `
`<=>5x-15-4=2x-2+7`
`<=>5x-2x=15+4-2+7`
`<=>3x=24`
`<=>x=8`
`h,4(3x-2)-3(x-4)=7x+20`
`<=>12x-8-3x+12=7x+20`
`<=>12x-3x-7x=20+8+12`
`<=>2x=40`
`<=>x=20`
Giải các phương trình sau:
a) 1/x-2 - 1/x2 - 4 = 4/5
b) 1/x+2 + 1/(x+2)2 = 22
c) 3/2x-16 + 3x-20/x-8 + 1/8 = 13x-10x2/3x-24
d) 2 + 2x-8x/2x2+8x + 2x2+7x+23/2x2+7x-4 = 2x+5/2x-1
e) 1/2-x + 14/x2-9 = x-4/x+3 + 7/3+x
g) 3/2x+1 = 6/2x+3 + 8/4x2+8x+3
a. \(\sqrt{\left(2x+3\right)^2}=x+1\)
b. \(\sqrt{\left(2x-1\right)^2}=x+1\)
c. \(\sqrt{x+3}=5\)
d. \(\sqrt{x+2}=\sqrt{7}\)
e. \(5\sqrt{x}=20\)
f. \(\sqrt{x+4}=7\)
g. \(\sqrt{\left(2x+1\right)^2}=3\)
a, \(\sqrt{\left(2x+3\right)^2}=x+1\)
\(\Leftrightarrow\left|2x+3\right|=x+1\)
TH1: \(\left\{{}\begin{matrix}2x+3=x+1\\2x+3\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x\ge-\dfrac{3}{2}\end{matrix}\right.\Rightarrow\) vô nghiệm.
Vậy phương trình vô nghiệm.
TH2: \(\left\{{}\begin{matrix}-2x-3=x+1\\2x+3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{4}{3}\\x< -\dfrac{3}{2}\end{matrix}\right.\Rightarrow\) vô nghiệm.
b,
a, \(\sqrt{\left(2x-1\right)^2}=x+1\)
\(\Leftrightarrow\left|2x-1\right|=x+1\)
TH1: \(\left\{{}\begin{matrix}2x-1=x+1\\2x-1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x\ge\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow x=2\)
TH2: \(\left\{{}\begin{matrix}-2x+1=x+1\\2x-1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x< \dfrac{1}{2}\end{matrix}\right.\Leftrightarrow x=0\)
14, giải các PT sau.
1, 4-(x-5)=5(x-3x)
2, 32-4(0,5y-5)=3y+2
3, 19-2(x+11)=5(2x-3)-4(5x-7)
4, 4(x+3)-7x+17=8(5x-1)+166
5, 17-14(x+1)=13-4(x+1)-5(x-3)
6, 5(x+10)2+2x=5x2-3
7, (2x-1)2+5=(2x+3)(2x-3)-x
8, 3(x-2)2+2(x+3)(x-3)=5(x+1)2
giúp em với
a.(2x+1)(x-3)=5x+4-2*(x-2)*(x+2)
b.3x-(2x+1)^2=4x^2-(2x-1)(x+1)
c(3x-1)/(x-1)-(2x+5)/(x+3)=1-(4/(x^2+2x-3))
d.3/(4x-20)+15/(50-2x^2)=7/6x+30
1,tìm x a) (x+3)^2-(x-2)^3=(x+5)(x^2-5x+25)-108 b) 4(x^2+2x-1)^2-(2x^2-3)^2=0 c) (2x-1)(4x^2+2x+1)-(x-2)^2=-x(x-6)-5
a) \(\left(x+3\right)^2-\left(x-2\right)^3=\left(x+5\right)\left(x^2-5x+25\right)-108\)
\(\Leftrightarrow x^2+6x+9-x^2+4x-4=x^3-5x^2+25x+5x^2-25x+125-108\)
\(\Leftrightarrow x^3-10x+12=0\Leftrightarrow\left(x-2\right)\left(x^2+2x+6\right)=0\)
\(\Leftrightarrow x=2\)( do \(x^2+2x+6=\left(x+1\right)^2+4\ge4>0\))
Bài tập: Rút gọn biểu thức
A=|x-2| + |3-x| +|2x-5|+|10-2x|
B=3|x-3|+2|4-x|+|x|
C=-6|x+1|-3|2x+1|+5|x-1|
D=-|x|+|3x-1|-|4x+1|+|x-9|
E=5|x-7|-2|2x-7|+3|x+5|-4|4-2x|
Giải phương trình
a)(x+6)/2 + 2(x+17)/2 + 5(x-10)/6 = 2x+6
b)(x+1)/4 - (2x-1)/5 + (2x+1)/2 = (27x+10)/20
c)(x-2)3 + (x-4)3 + (x-7)3 - 3(x-2)(x-4)(x-7) = 0
a)x=-17
b)x=9/10
c)x=4\(\frac{1}{3}\)
tick đi giải chi tiết cho
a)Sử dụng tính chất tỉ lệ thức, có thể biến đổi phương trình như sau
7x+35/3=2x+6/1=>(7x+35)1=3(2x+6)
=>x=-17
b)Sử dụng tính chất tỉ lệ thức, có thể biến đổi phương trình như sau
17x+19/20=27x+10/20=>(17x+19)20=20(27x+10)
c)<=>(x-2)^3+(x-4)^3+(x-7)^3+(-3)(x-2)(x-4)(x-7)=19(3x-13)
=>19(3x-13)=0
rút gọn 57x=247
=>19.3x=19.13
=>3x=13
=>x=13/3
=>x=4\(\frac{1}{3}\)
b)
\(\frac{x+1}{4}-\frac{2x-1}{5}+\frac{2x+1}{2}=\frac{27x+10}{20}\)
<=> \(\frac{5\left(x+1\right)}{20}-\frac{4\left(2x-1\right)}{20}+\frac{10\left(2x+1\right)}{20}=\frac{27x+10}{20}\)
<=> \(5\left(x+1\right)-4\left(2x-1\right)+10\left(2x+1\right)=27x+10\)
<=> \(5x+5-8x+4+20x+10=27x+10\)(Bước này có thể bỏ)
<=> \(10x=-9\)
<=> \(x=-\frac{9}{10}\)
Vậy tập nghiệm của phương trình: S=\(\left(-\frac{9}{10}\right)\) ( thay ngoặc tròn thành ngoặc nhọn )
P/s: Tớ chỉ biết làm như thế thôi!! :)))