\(\dfrac{10+10\sqrt{2}}{\sqrt{5}+2}\)+\(\dfrac{8}{1-\sqrt{5}}\)
\(\dfrac{\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\)
\(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}\)+\(\dfrac{8}{1-\sqrt{5}}\)
\(\dfrac{5+\sqrt{7}}{9-\sqrt{23+8\sqrt{7}}}\)+\(\dfrac{5-\sqrt{7}}{2+\sqrt{16+6\sqrt{7}}}\)
\(\dfrac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}\)+\(\dfrac{1}{\sqrt{2}-\sqrt{2+\sqrt{3}}}\)
đề là rút gọn các biểu thức sau
nhờ mọi người giải giúp mình. cảm ơn mn nhìu
a: \(=\dfrac{\sqrt{6-2\sqrt{5}}\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}\)
\(=\dfrac{\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}=\dfrac{3\sqrt{5}+5-3-\sqrt{5}}{2\sqrt{5}+2}\)
\(=\dfrac{2\sqrt{5}+2}{2\sqrt{5}+2}=1\)
b: \(=\dfrac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}-2-2\sqrt{5}\)
=2căn 5-2-2căn 5
=-2
d: \(=\dfrac{\sqrt{2}}{2+\sqrt{3}+1}+\dfrac{\sqrt{2}}{2-\sqrt{3}+1}\)
\(=\dfrac{\sqrt{2}}{3+\sqrt{3}}+\dfrac{\sqrt{2}}{3-\sqrt{3}}\)
\(=\dfrac{3\sqrt{2}-\sqrt{6}+3\sqrt{2}+\sqrt{6}}{6}=\sqrt{2}\)
a,\(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}=\dfrac{8}{1-\sqrt{5}}\)
b,\(\dfrac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
\(a,Sửa:\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}\\ =\dfrac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}+\dfrac{8\left(1+\sqrt{5}\right)}{-4}\\ =2\sqrt{5}-2-2\sqrt{5}=-2\\ b,=\dfrac{\sqrt{32}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{6}\left(\sqrt{5}+\sqrt{27}\right)}\\ =\dfrac{\sqrt{2}\left(4-\sqrt{6}\right)}{\sqrt{3}\left(\sqrt{6}-4\right)}-\dfrac{1}{\sqrt{6}}=\dfrac{\sqrt{6}}{3}-\dfrac{\sqrt{6}}{6}=\dfrac{2\sqrt{6}-\sqrt{6}}{6}=\dfrac{\sqrt{6}}{6}\)
B1: thực hiện phép tính
a )\(\dfrac{\sqrt{6}-\sqrt{15}}{\sqrt{35}-\sqrt{14}}\)
b ) \(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}\)
c )\(\dfrac{\sqrt{3-\sqrt{5}.}\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\)
d ) \(\dfrac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{1}{\sqrt{2}-\sqrt{2+\sqrt{3}}}\)
B2:chúng minh vế phải bằng vế trái
a) \(\dfrac{21+8\sqrt{5}}{4+\sqrt{5}}.\sqrt{9-4\sqrt{5}}=\sqrt{5}-2\)
b) \(\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}=-2\sqrt{3}\)
\(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}\)
=\(\dfrac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\left(\sqrt{5}+\sqrt{2}\right)}-\dfrac{8\left(\sqrt{5}+1\right)}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}\)
\(=2\sqrt{5}-\dfrac{8\left(\sqrt{5}+1\right)}{4}\)
\(=2\sqrt{5}-2\left(\sqrt{5}+1\right)\)
\(=2\sqrt{5}-2\sqrt{5}-2\)
=-2
\(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}\)
\(=\dfrac{\sqrt{20}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}-\dfrac{8}{\sqrt{5}-1}\)
\(=2\sqrt{5}-2\sqrt{5}-2\)
=-2
a) \(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}\)
\(=\dfrac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}+\dfrac{8\left(\sqrt{5}+1\right)}{-4}\\ =2\sqrt{5}-2\left(\sqrt{5}+1\right)=2\sqrt{5}-2\sqrt{5}-2=-2\)
1 Đúng hoặc Sai,nếu sai thì sửa lại cho đúng
a/\(\dfrac{5}{2\sqrt{5}}=\dfrac{\sqrt{5}}{2}\) ; b/\(\dfrac{2\sqrt{2}+2}{5\sqrt{2}}=\dfrac{2+\sqrt{2}}{10}\) ; c/\(\dfrac{2}{\sqrt{3}-1}=\sqrt{3}-1\) ; d/\(\dfrac{8}{2\sqrt{8}-1}=\dfrac{P\left(2\sqrt{8}+1\right)}{4P-1}\) ; e/\(\dfrac{1}{\sqrt{x}-\sqrt{y}}=\dfrac{\sqrt{x}+\sqrt{y}}{x-y}\)
2 Rút gọn các biểu thức
a/\(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}\) ; b/\(\dfrac{a-\sqrt{a}}{1-\sqrt{a}}\) ; c/\(\dfrac{3+\sqrt{3}}{3-\sqrt{3}}+\dfrac{3-\sqrt{3}}{3+\sqrt{3}}\) ; d/\(\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}+\sqrt{\dfrac{3+\sqrt{5}}{3-\sqrt{5}}}}\)
Bài 2:
a) \(\dfrac{2+\sqrt{2}}{\sqrt{2}+1}=\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}=\sqrt{2}\)
b) \(\dfrac{a-\sqrt{a}}{1-\sqrt{a}}=\dfrac{-\sqrt{a}\left(1-\sqrt{a}\right)}{1-\sqrt{a}}=-\sqrt{a}\)
c) \(\dfrac{3+\sqrt{3}}{3-\sqrt{3}}+\dfrac{3-\sqrt{3}}{3+\sqrt{3}}\)
\(=\dfrac{\left(3+\sqrt{3}\right)^2+\left(3-\sqrt{3}\right)^2}{6}\)
\(=\dfrac{12+6\sqrt{3}+12-6\sqrt{3}}{6}=4\)
Bài 1:
a) Đúng
b) Sai vì \(\dfrac{2\sqrt{2}+2}{5\sqrt{2}}=\dfrac{\sqrt{2}\left(2+\sqrt{2}\right)}{5\sqrt{2}}=\dfrac{2+\sqrt{2}}{5}\)
c) Sai vì \(\dfrac{2}{\sqrt{3}-1}=\sqrt{3}+1\)
e) Đúng
\(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}\)
Tính hộ mình vs ạ
\(=\dfrac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}-\dfrac{8\left(\sqrt{5}+1\right)}{4}\\ =2\sqrt{5}-2\sqrt{5}-2=-2\)
\(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}\)
giải giúp mình câu này với
\(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}\) = \(\dfrac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{-\dfrac{4}{1+\sqrt{5}}}\) = \(2\sqrt{5}-2\left(1+\sqrt{5}\right)\) = -2.
1. Tính : \(\dfrac{12}{4-\sqrt{10}}\)-6\(\sqrt{\dfrac{5}{2}}\)+\(\dfrac{5\sqrt{2}+\sqrt{10}}{\sqrt{5}+1}\)
2,Rút gọn:A=(\(\dfrac{\sqrt{x}}{\sqrt{x}-5}\)-\(\dfrac{5}{\sqrt{x}+5}\)+\(\dfrac{10\sqrt{x}}{25-x}\)):\(\dfrac{3}{\sqrt{x}+5}\)
1: \(=8+2\sqrt{10}-3\sqrt{10}+\sqrt{10}=8\)