Phân tích đa thức sau thành nhân tử: x^10 + x^2015 +1
phân tích đa thức sau thành nhân tử
x^10+x^5+1
Phân tích đa thức sau thành nhân tử:
A=x^10+x^8+1
\(x^{10}+x^8+1\)
\(=x^{10}-x+x^8-x^2+x^2+x+1\)
\(=x\left(x^9-1\right)+x^2\left(x^6-1\right)+x^2+x+1\)
\(=x\left(x^3-1\right)\left(x^6+x^3+1\right)+x^2\left(x^3+1\right)\left(x^3-1\right)+x^2+x+1\)
\(=\left(x^7+x^4+x\right)\left(x^3-1\right)+\left(x^5+x^2\right)\left(x^3-1\right)+x^2+x+1\)
\(=\left(x^3-1\right)\left(x^7+x^5+x^4+x^2+x\right)+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x-1\right)\left(x^7+x^5+x^4+x^2+x\right)+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x^8-x^7+x^6-x^4+x^3-x+1\right)\)
Chúc bạn học tốt.
Phân tích đa thức thành nhân tử: x2-x-2015*2016
* là nhân à ???????????
\(x^2-x-2015\times2016=\left(x^2-2016x\right)+\left(2015x-2015\times2016\right)=x.\left(x-2016\right)+2015\left(x-2016\right)=\left(x-2016\right)\left(x+2015\right)\)k nha
Phân tích đa thức thành nhân tử:
x^2-2014xy-2016xz+(2015^2-1)yz
Bài 1 : Phân tích các đa thức sau thành nhân tử :
1) 15x + 15y 2) 8x - 12y
3) xy - x 4) 4x^2- 6x
Bài 2 : Phân tích các đa thức sau thành nhân tử :
1) 2(x + y) - 5a(x + y) 2) a^2(x - 5) - 3(x - 5)
3) 4x(a - b) + 6xy(a - b) 4) 3x(x - 1) + 5(x -1)
Bài 3 : Tính giá trị của biểu thức :
1) A = 13.87 + 13.12 + 13
2) B = (x - 3).2x + (x - 3).y tại x = 13 và y = 4
Bài 4 : Tìm x :
1) x(x - 5) - 2(x - 5) = 0 2) 3x(x - 4) - x + 4 = 0
3) x(x - 7) - 2(7 - x) = 0 4) 2x(2x + 3) - 2x - 3 = 0
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Phân tích đa thức thành nhân tử
x\(^{10}\)+x\(^2\)+1
\(x^{10}+x^2+1\)
\(=x^{10}-x^8+x^4+x^8-x^6+x^2+x^6-x^4+1\)
\(=x^4\left(x^6-x^4+1\right)+x^2\left(x^6-x^4+1\right)+\left(x^6-x^4+1\right)\)
\(=\left(x^6-x^4+1\right)\left(x^4+x^2+1\right)\)
\(=\left(x^6-x^4+1\right)\left[x^4+2x^2+1-x^2\right]\)
\(=\left(x^6-x^4+1\right)\left[\left(x^2+1\right)^2-x^2\right]\)
\(=\left(x^6-x^4+1\right)\left(x^2+1+x\right)\left(x^2+1-x\right)\)
phân tích đa thức thành nhân tử bằng phương pháp thêm bớt hạng tử để xuất hiện hằng đăng thức
x^4 + x^2 +1
phân tích đa thức thành nhân tử bằng phương pháp thêm hạng tử để xuất hiện thừa số chung
x^5 - x^4 - 1
x - x^10 + x^5 + 1
x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)
k mk nha
phân tích đa thức thành nhân tử bằng phương pháp thêm bớt hạng tử để xuất hiện hằng đăng thức
x^4 + x^2 +1
phân tích đa thức thành nhân tử bằng phương pháp thêm hạng tử để xuất hiện thừa số chung
x^5 - x^4 - 1
x - x^10 + x^5 + 1
x5-x4-1=x5-x3-x2-x4+x2+x+x3-x-1
=x2.(x3-x-1)-x.(x3-x-1)+(x3-x-1)
=(x3-x-1)(x2-x+1)
x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)
k mk nha
phân tích đa thức thành nhân tử : x^4 +2015x^2 +2014x +2015
\(x^4+2015x^2+2014x+2015.\)
=\(\left(x^4-x\right)+2015x^2+2015x+2015\)
=\(x\left(x^3-1\right)+2015\left(x^2+x+1\right)\)
=\(x\left(x-1\right)\left(x^2+x+1\right)+2015\left(x^2+x+1\right)\)
= \(\left(x^2+x+1\right)\left(x^2-x-2015\right)\)
k cho mik