Những câu hỏi liên quan
NT
Xem chi tiết
ND
29 tháng 4 2018 lúc 16:28

Bài 1:

\(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\) với a,b,c > 0

Áp dụng BĐT Chauchy cho 2 số không âm, ta có:

\(\dfrac{bc}{a}+\dfrac{ac}{b}=c\left(\dfrac{b}{a}+\dfrac{a}{b}\right)\ge c\sqrt{\dfrac{b}{a}.\dfrac{a}{b}}=2c\)

\(\dfrac{ac}{b}+\dfrac{ab}{c}=a\left(\dfrac{c}{b}+\dfrac{b}{c}\right)\ge a\sqrt{\dfrac{c}{b}.\dfrac{b}{c}}=2a\)

\(\dfrac{ab}{c}+\dfrac{bc}{a}=b\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\ge b\sqrt{\dfrac{a}{c}.\dfrac{c}{a}}=2b\)

Cộng vế theo vế ta được:

\(2\left(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\right)\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\)

Bình luận (0)
TL
Xem chi tiết
MS
28 tháng 5 2018 lúc 11:49

Đề kiểu gì v bạn?

Bình luận (0)
TB
Xem chi tiết
H24
31 tháng 7 2017 lúc 21:03

1. Vì x, y, z > 0

\(xy+yz+zx\ge2xyz\)

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge2\)

Suy ra:

\(\dfrac{1}{x}\ge1-\dfrac{1}{y}+1-\dfrac{1}{z}=\dfrac{y-1}{y}+\dfrac{z-1}{z}\ge2\sqrt{\dfrac{\left(y-1\right)\left(z-1\right)}{yz}}\). (1)

Tương tự \(\dfrac{1}{y}\ge2\sqrt{\dfrac{\left(z-1\right)\left(x-1\right)}{zx}}\) (2)

\(\dfrac{1}{z}\ge2\sqrt{\dfrac{\left(x-1\right)\left(y-1\right)}{xy}}\) (3)

Nhân (1), (2), (3) với nhau theo vế ta được

\(\dfrac{1}{xyz}\ge\dfrac{8\left(x-1\right)\left(y-1\right)\left(z-1\right)}{xyz}\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(z-1\right)\le\dfrac{1}{8}\)

Đẳng thức xảy ra \(\Leftrightarrow x=y=z=\dfrac{3}{2}\)

Bình luận (2)
H24
1 tháng 8 2017 lúc 16:03

\(\dfrac{c+1}{c+3}\ge\dfrac{1}{a+2}+\dfrac{3}{b+4}\)

\(\Leftrightarrow1-\dfrac{2}{c+3}\ge\dfrac{1}{a+2}+\dfrac{3}{b+4}\)

\(\Leftrightarrow1-\dfrac{1}{a+2}\ge\dfrac{3}{b+4}+\dfrac{2}{c+3}\ge2\sqrt{\dfrac{6}{\left(b+4\right)\left(c+3\right)}}\)

Hay \(\dfrac{a+1}{a+2}\ge2\sqrt{\dfrac{6}{\left(b+4\right)\left(c+3\right)}}\) (1)

Tương tự \(\dfrac{b+1}{b+4}\ge2\sqrt{\dfrac{2}{\left(c+3\right)\left(a+2\right)}}\) (2)

\(\dfrac{c+1}{c+3}\ge2\sqrt{\dfrac{3}{\left(a+2\right)\left(b+4\right)}}\) (3)

Nhân (1), (2), (3) vế theo vế

\(\dfrac{\left(a+1\right)\left(b+1\right)\left(c+1\right)}{\left(a+2\right)\left(b+4\right)\left(c+3\right)}\ge8.\dfrac{6}{\left(a+2\right)\left(b+4\right)\left(c+3\right)}\)

\(\Leftrightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge48\)

Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=5\\c=3\end{matrix}\right.\)

Bình luận (0)
Xem chi tiết
H24
7 tháng 1 2018 lúc 23:04

\(VT\ge a+b+c+\dfrac{9}{2\left(ab+bc+ca\right)}\ge\sqrt{3\left(ab+bc+ca\right)}+\dfrac{9}{2\left(ab+bc+ca\right)}\)

\(=\dfrac{\sqrt{3\left(ab+bc+ca\right)}}{2}+\dfrac{\sqrt{3\left(ab+bc+ca\right)}}{2}+\dfrac{9}{2\left(ab+bc+ca\right)}\ge3\sqrt[3]{\dfrac{27}{8}}=\dfrac{9}{2}\)

Bình luận (0)
HD
7 tháng 1 2018 lúc 18:20

Áp dụng BĐT Cauchy ta có

\(\dfrac{b^2}{a}+a\ge2b;\) \(\dfrac{c^2}{b}+b\ge2c\); \(\dfrac{a^2}{c}+c\ge2a\)

\(\Rightarrow\dfrac{b^2}{a}+\dfrac{c^2}{b}+\dfrac{a^2}{c}\ge a+b+c\)

\(\Rightarrow\dfrac{b^2}{a}+\dfrac{c^2}{b}+\dfrac{a^2}{c}+\dfrac{9}{2\left(ab+bc+ac\right)}\ge a+b+c+\dfrac{9}{2\left(ab+bc+ac\right)}\)Ta phải chứng minh

\(a+b+c+\dfrac{9}{2\left(ab+bc+ac\right)}\ge\dfrac{9}{2}\)

\(\Leftrightarrow4\left(a+b+c\right)\left(ab+bc+ac\right)+18\ge18\left(ab+bc+ac\right)\)

\(\Leftrightarrow\left(ab+bc+ac\right)\left(4\left(a+b+c\right)-18\right)+18\ge0\)

Áp dụng BĐT Cauchy:

\(ab+bc+ac\ge3\sqrt[3]{a^2b^2c^2}=3\)

\(a+b+c\ge3\sqrt[3]{abc}=3\)

\(\Rightarrow\left(ab+bc+ac\right)\left(4\left(a+b+c\right)-18\right)+18\ge3\left(4.3-18\right)+18=0\)=> đpcm

Bình luận (0)
VH
Xem chi tiết
KK
2 tháng 4 2017 lúc 13:45

\(VT=a-\dfrac{ab^2}{b^2+1}+b-\dfrac{bc^2}{c^2+1}+c-\dfrac{ca^2}{a^2+1}\)

\(VT=3-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\right)\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}b^2+1\ge2\sqrt{b^2}=2b\\c^2+1\ge2\sqrt{c^2}=2c\\a^2+1\ge2\sqrt{a^2}=2a\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{ab^2}{b^2+1}\le\dfrac{ab^2}{2b}=\dfrac{ab}{2}\\\dfrac{bc^2}{c^2+1}\le\dfrac{bc^2}{2c}=\dfrac{bc}{2}\\\dfrac{ca^2}{a^2+1}\le\dfrac{ca^2}{2a}=\dfrac{ca}{2}\end{matrix}\right.\)

\(\Rightarrow\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\le\dfrac{ab+bc+ca}{2}\)

\(\Rightarrow3-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\right)\ge3-\dfrac{ab+bc+ca}{2}\) ( 1 )

Theo hệ quả của bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow3\ge ab+bc+ca\)

\(\Rightarrow\dfrac{3}{2}\ge\dfrac{ab+bc+ca}{2}\)

\(\Rightarrow\dfrac{3}{2}\le3-\dfrac{ab+bc+ca}{2}\) ( 2 )

Từ (1) và (2)

\(\Rightarrow3-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\right)\ge\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{a}{b^2+1}+\dfrac{b}{c^2+1}+\dfrac{c}{a^2+1}\ge\dfrac{3}{2}\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c=1\)

Bình luận (1)
LP
Xem chi tiết
HD
17 tháng 9 2017 lúc 12:01

Áp dụng BĐT Cô si Ta có : \(\dfrac{a}{b^2+1}=a-\dfrac{ab^2}{b^2+1}\ge a-\dfrac{ab^2}{2b}=a-\dfrac{ab}{2}\)

\(\dfrac{b}{c^2+1}=b-\dfrac{c^2b}{c^2+1}\ge b-\dfrac{c^2b}{2c}=b-\dfrac{cb}{2}\)

\(\dfrac{c}{a^2+1}=c-\dfrac{a^2c}{a^2+1}\ge c-\dfrac{a^2c}{2a}=c-\dfrac{ac}{2}\)

Cộng ba vế BĐT lại ta được:

\(\dfrac{a}{b^2+1}+\dfrac{b}{c^2+1}+\dfrac{c}{a^2+1}\ge a+b+c-\left(\dfrac{ab+bc+ac}{2}\right)\)

Ta có đánh giá quen thuộc \(ab+bc+ac\le\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{9}{3}=3\)

\(\Rightarrow\dfrac{a}{b^2+1}+\dfrac{b}{c^2+1}+\dfrac{c}{a^2+1}\ge3-\dfrac{3}{2}=\dfrac{3}{2}\)(ĐPCM)

Bình luận (2)
H24
Xem chi tiết
LF
21 tháng 6 2017 lúc 22:33

làm rõ \(\sum_{cyc}\frac{a}{a+b}-\frac{3}{2}=\sum_{cyc}\left(\frac{a}{a+b}-\frac{1}{2}\right)=\sum_{cyc}\frac{a-b}{2(a+b)}\)

\(=\sum_{cyc}\frac{(a-b)(c^2+ab+ac+bc)}{2\prod\limits_{cyc}(a+b)}=\sum_{cyc}\frac{c^2a-c^2b}{2\prod\limits_{cyc}(a+b)}\)

\(=\sum_{cyc}\frac{a^2b-a^2c}{2\prod\limits_{cyc}(a+b)}=\frac{(a-b)(a-c)(b-c)}{2\prod\limits_{cyc}(a+b)}\geq0\) (đúng)

Bình luận (4)
LF
21 tháng 6 2017 lúc 23:52

ok thỏa thuận rồi tui làm nửa sau thui nhé :D

Đặt \(a^2=x;b^2=y;c^2=z\) thì ta có:

\(VT=\sqrt{\dfrac{x}{x+y}}+\sqrt{\dfrac{y}{y+z}}+\sqrt{\dfrac{z}{x+z}}\)

Lại có: \(\sqrt{\dfrac{x}{x+y}}=\sqrt{\dfrac{x}{\left(x+y\right)\left(x+z\right)}\cdot\sqrt{x+z}}\)

Tương tự cộng theo vế rồi áp dụng BĐT C-S ta có:

\(VT^2\le2\left(x+y+z\right)\left[\dfrac{x}{\left(x+y\right)\left(x+z\right)}+\dfrac{y}{\left(y+z\right)\left(y+x\right)}+\dfrac{z}{\left(z+x\right)\left(z+y\right)}\right]\)

\(\Leftrightarrow VT^2\le\dfrac{4\left(x+y+z\right)\left(xy+yz+xz\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\)

\(VP^2=\dfrac{9}{2}\) nên cần cm \(VT\le \frac{9}{2}\)

\(\Leftrightarrow9\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8\left(x+y+z\right)\left(xy+yz+xz\right)\)

Can you continue

Bình luận (1)
NN
Xem chi tiết
LF
28 tháng 1 2018 lúc 18:46

Đặt \(\left\{{}\begin{matrix}\sqrt{a^2+b^2}=x\\\sqrt{b^2+c^2}=y\\\sqrt{c^2+a^2}=z\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a^2=\dfrac{x^2+z^2-y^2}{2}\\b^2=\dfrac{x^2+y^2-z^2}{2}\\c^2=\dfrac{y^2+z^2-x^2}{2}\\x+y+z=\sqrt{2011}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}b+c\le\sqrt{2\left(b^2+c^2\right)}=\sqrt{2}y\\a+b\le\sqrt{2}x\\c+a\le\sqrt{2}z\end{matrix}\right.\)

\(VT=\dfrac{1}{2\sqrt{2}}\left(\dfrac{x^2+z^2-y^2}{y}+\dfrac{x^2+y^2-z^2}{z}+\dfrac{y^2+z^2-x^2}{x}\right)\)

\(\ge\dfrac{1}{2\sqrt{2}}\left(\dfrac{2\left(x+y+z\right)^2}{\left(x+y+z\right)}-\left(x+y+z\right)\right)\)

\(=\dfrac{1}{2\sqrt{2}}\left(x+y+z\right)=\dfrac{\sqrt{2011}}{2\sqrt{2}}=VP\)

Bình luận (0)
NH
Xem chi tiết
DH
21 tháng 2 2018 lúc 15:36

a) \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Leftrightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\left(đúng\forall a;b\right)\)

Vậy bdt đã được cm

b) \(K=n\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

\(=\left(n^2+3n\right)^2+2\left(n^2+3n\right)\)

Ta có :

\(\left(n^2+3n\right)^2< \left(n^2+3n\right)^2+2\left(n^2+3n\right)< \left(n^2+3n\right)^2+2\left(n^2+3n\right)+1\)

\(\Leftrightarrow\left(n^2+3n\right)^2< \left(n^2+3n\right)^2+2\left(n^2+3n\right)< \left(n^2+3n+1\right)^2\)

\(n^2+3n;n^2+3n+1\) là 2 số tn liên tiếp

\(\Rightarrow K\) không phải số chính phương

Bình luận (0)