Những câu hỏi liên quan
TD
Xem chi tiết
LB
28 tháng 3 2015 lúc 15:19

Xét TS

Có a^3 + b^3 + c^3 - 3abc = a^3 + 3a^2b + 3ab^2 + b^2 + c^3 - 3abc - 3a^2b - 3ab^2 = (a + b)^3 + c^3 - 3ab(a + b + c) = (a + b + c)(  (a+b)^2 + (a + b)c + c^2 - 3abc) = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ac) 

Rút gọn TS/MS được kết quả = a + b + c = 2009 => điều phải chứng minh

Bình luận (0)
MH
Xem chi tiết
PH
4 tháng 5 2017 lúc 13:12

đề sai òi bạn ơi sửa lại đi

Bình luận (0)
BS
Xem chi tiết
DH
8 tháng 8 2017 lúc 9:55

Ta có :

 \(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-ac-bc}\)

\(=\frac{\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-3a^2b-3ab^2-3abc}{a^2+b^2+c^2-ab-ac-bc}\)

\(=\frac{\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-ac-bc}\)

\(=\frac{\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-ac-bc}\)

\(=\frac{\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)}{a^2+b^2+c^2-ab-ac-bc}\)

\(=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)}{a^2+b^2+c^2-ab-ac-bc}\)

\(=a+b+c=2009\)(đpcm)

Bình luận (0)
H24
Xem chi tiết
NL
11 tháng 6 2019 lúc 22:43

\(B=\frac{1}{a^2+b^2+c^2}+\frac{4}{2ab+2bc+2ac}+\frac{2007}{ac+bc+ac}\)

\(B\ge\frac{\left(1+2\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}+\frac{2007}{\frac{\left(a+b+c\right)^2}{3}}\)

\(B\ge\frac{9}{\left(a+b+c\right)^2}+\frac{6021}{\left(a+b+c\right)^2}\ge\frac{9}{3^2}+\frac{6021}{3^2}=670\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (1)
MN
Xem chi tiết
NT
Xem chi tiết
NL
Xem chi tiết
TM
Xem chi tiết
H24
Xem chi tiết
VT
24 tháng 5 2016 lúc 20:29

bạn chia a^2 cho ca tu và mẫu . từ giả thiết ta có : 3abc >= ab +bc+ ca . suy ra : 1/a + 1/b +1/c<=3 . sau khi chia ở A : ta có si ở mẫu . rồi áp dụng cô si ngc la ra . ban nao ko hieu thi nhan voi minh

Bình luận (0)