BB

 Cho a + b + c = 2009. Chứng minh rằng
\(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-ac-bc}=2009\)

TL
5 tháng 10 2015 lúc 13:32

Ta có a+ b+ c3 - 3abc

=[ (a+ b)3 + c3 ] - [3ab(a+b) + 3abc]  = (a + b+ c)3 - 3(a + b).c(a + b + c) - 3ab.(a + b + c)

= (a + b+ c). [(a + b + c)2 - 3c(a + b) - 3ab]

= (a + b+ c).(a+ b+ c2 + 2ab + 2bc + 2ca - 3ac - 3bc - 3ab)

= (a + b + c)(a+ b+ c2 - ab - bc - ca)

=> \(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-ac-bc}=a+b+c=2009\)

Vậy.......

Bình luận (0)

Các câu hỏi tương tự
TD
Xem chi tiết
MH
Xem chi tiết
BS
Xem chi tiết
MN
Xem chi tiết
NT
Xem chi tiết
NL
Xem chi tiết
VT
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết