Tìm giá trị lớn nhất của biểu thức : C=\(\dfrac{15\left|x+1\right|+32}{6\left|x+1\right|+8}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tìm giá trị lớn nhất của biểu thức
\(c=\frac{15\left|x+1\right|+32}{6\left|x+1\right|+8}\)
tổng 2 số là 150, tổng của 1/6 số này và 1/9 số kia = 18. Tìm 2 số đó
Tìm giá trị lớn nhất của biểu thức
\(A=\frac{15\left|x+1\right|+32}{6\left|x+1\right|+8}\)
Mình cần gấp
bạn có biết cách làm ko vậy đúng lúc mình đang cần gấp
giúp mk với nha
tìm giá trị lớn nhất của biểu thức
B=\(\frac{\left|2x+7\right|+13}{2\left|2y+7\right|+6}\)
C=\(\frac{15\left|x+1\right|+32}{6\left|x+1\right|+8}\)
Tìm giá trị lớn nhất của biểu thức: A=\(\frac{15\left|x+1\right|+32}{6\left|x+1\right|+8}\)
Các bạn giúp mình với!!!!!!
\(A=\frac{15\left|x+1\right|+32}{6\left|x+1\right|+8}=\frac{\frac{5}{2}\left(6\left|x+1\right|+8\right)+12}{6\left|x+1\right|+8}=\frac{5}{2}+\frac{12}{6\left|x+1\right|+8}\)
Do \(6\left|x+1\right|+8\ge8\) => \(\frac{12}{6\left|x+1\right|+8}\le\frac{12}{8}=\frac{3}{2}\)=> \(\frac{5}{2}+\frac{12}{6\left|x+1\right|+8}\le\frac{5}{2}+\frac{3}{2}=4\)
Dấu "=" xảy ra<=> x + 1 = 0 <=> x = -1
Vậy MaxA = 4 <=> x = -1
a) tìm giá trị lớn nhất của biểu thức A = \(\dfrac{2022}{\left|x\right|+2023}\)
b) tìm giá trị nhỏ nhất của biểu thức B = \(\left(\sqrt{x}+1\right)^{99}+2022\) với \(x\ge0\)
c) tìm giá trị lớn nhất của biểu thức C = \(\dfrac{5-x^2}{x^2+3}\)
d) tìm giá trị lớn nhất của biểu thức D = \(\left|x-2022\right|+\left|x-1\right|\)
a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min
Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)
\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)
Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)
Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0
b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min
Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)
\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)
Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)
Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0
Câu c) và d) thì tự làm, ko có rảnh =))))
tìm giá trị lớn nhất của biểu thức:
P=\(\frac{15\left|x+1\right|+32}{6\left|x+1\right|+8}\)
trình bày đầy đủ nha
Tìm giá trị nhỏ nhất của biểu thức : C=\(\dfrac{15\left|x+1\right|+32}{6\left|x+1\right|+8}\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left\{{}\begin{matrix}15\left|x+1\right|+32\ge32\\6\left|x+1\right|+8\ge8\end{matrix}\right.\)
\(\Rightarrow\dfrac{15\left|x+1\right|+32}{6\left|x+1\right|+8}\ge4\)
Hay \(C\ge4\)với mọi giá trị của \(x\in R\)
Để \(C=4\) thì:
\(\left\{{}\begin{matrix}15\left|x+1\right|=0\\6\left|x+1\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\x=-1\end{matrix}\right.\Rightarrow x=-1\)
Vậy......................
Chúc bạn học tốt!!!
\(\text{TÌm giá trị lớn nhất của biểu thức}\)\(A=\frac{15\left|x+1\right|+32}{6\left|x+1\right|+8}\)
MÌNH ĐANG CẦN GẤP, GIÚP MÌNH NHA
Tìm giá trị lớn nhất , giá trị nhỏ nhất của biểu thức :
a)\(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\)
b)B=\(\dfrac{2009}{2008}-\left|x-\dfrac{3}{5}\right|\)
c)C=\(-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\)
Ai lm đc câu nào thì giúp mk với , cảm ơn !!
\(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\ge\dfrac{1}{9}\\ A_{min}=\dfrac{1}{9}\Leftrightarrow x=\dfrac{3}{5}\\ B=\dfrac{2009}{2008}-\left|x-\dfrac{3}{5}\right|\le\dfrac{2009}{2008}\\ B_{max}=\dfrac{2009}{2008}\Leftrightarrow x=\dfrac{3}{5}\\ C=-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\le1\dfrac{2}{3}\\ C_{max}=1\dfrac{2}{3}\Leftrightarrow\dfrac{1}{3}x=-4\Leftrightarrow x=-12\)
a: \(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\ge\dfrac{1}{9}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{5}\)