Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
H24
Xem chi tiết
H24
26 tháng 8 2021 lúc 20:08

`a)x^2-2x+2+4y^2+4y`

`=x^2-2x+1+4y^2+4y+1`

`=(x-1)^2+(2y+1)^2`

`b)4x^2+y^2+12x+4y+13`

`=4x^2+12x+9+y^2+4y+4`

`=(2x+3)^2+(y+2)^2`

`c)x^2+17+4y^2+8x+4y`

`=x^2+8x+16+4y^2+4y+1`

`=(x+4)^2+(2y+1)^2`

`d)4x^2-12xy+y^2-4y+13`

`=4x^2-12x+9+y^2-4y+4`

`=(2x-3)^2+(y-2)^2`

Bình luận (0)
LL
26 tháng 8 2021 lúc 20:10

a) \(x^2-2x+2+4y^2+4y=\left(x-1\right)^2+\left(2y+1\right)^2\)

b) \(4x^2+y^2+12x+4y+13=\left(2x+3\right)^2+\left(y+2\right)^2\)

c) \(x^2+17+4y^2+8x+4y=\left(x+4\right)^2+\left(2y+1\right)^2\)

d) \(4x^2-12x+y^2-4y+13=\left(2x-3\right)^2+\left(y-2\right)^2\)

Bình luận (0)
NT
26 tháng 8 2021 lúc 22:47

a: \(x^2-2x+2+4y^2+4y\)

\(=x^2-2x+1+4y^2+4y+1\)

\(=\left(x-1\right)^2+\left(2y+1\right)^2\)

b: \(4x^2+12x+y^2+4y+13\)

\(=4x^2+12x+9+y^2+4y+4\)

\(=\left(2x+3\right)^2+\left(y+2\right)^2\)

c: \(x^2+8x+4y^2+4y+17\)

\(=x^2+8x+16+4y^2+4y+1\)

\(=\left(x+4\right)^2+\left(2y+1\right)^2\)

d: \(4x^2-12x+y^2-4y+13\)

\(=4x^2-12x+9+y^2-4y+4\)

\(=\left(2x-3\right)^2+\left(y-2\right)^2\)

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
BL
Xem chi tiết
LT
Xem chi tiết
NL
29 tháng 5 2020 lúc 16:07

a/ Đề bài sai, điểm M không thuộc đường tròn

b/Đường tròn tâm \(I\left(2;-2\right)\)

Giao điểm của (C) với trục hoành thỏa mãn:

\(\left\{{}\begin{matrix}y=0\\x^2+y^2-4x+4y+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=0\\x^2-4x+3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A\left(1;0\right)\\B\left(3;0\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{IA}=\left(-1;2\right)=-1\left(1;-2\right)\\\overrightarrow{IB}=\left(1;2\right)\end{matrix}\right.\)

Có hai tiếp tuyến:

\(\left[{}\begin{matrix}1\left(x-1\right)-2\left(y-0\right)=0\\1\left(x-3\right)+2\left(y-0\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x-2y-1=0\\x+2y-3=0\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
NM
8 tháng 10 2021 lúc 7:07

\(a,=\left(x-2\right)^2-y^2=\left(x-y-2\right)\left(x+y-2\right)\\ b,=4x^2\left(x^2+2x+1\right)=4x^2\left(x+1\right)^2\\ c,=xy^2\left(x^2-2xy+y^2\right)=xy^2\left(x-y\right)^2\\ d,=\left(x-y\right)\left(x+y\right)-7\left(x-y\right)=\left(x-y\right)\left(x+y-7\right)\\ e,=\left(5x-2y\right)\left(5x+2y\right)\\ f,=x^2+3x+4x+12=\left(x+3\right)\left(x+4\right)\\ i,=x^2+2x-7x-14=\left(x+2\right)\left(x-7\right)\)

Bình luận (0)
H24
Xem chi tiết
NM
16 tháng 9 2021 lúc 8:09

\(a,=\left(x+1\right)^2\\ b,=\left(y-2\right)^2\\ c,=\left(x-3\right)^2\\ d,=\left(a-7\right)^2\\ e,=\left(m-2\right)^2\\ f,=\left(2x-1\right)^2\\ g,=\left(a+5\right)^2\\ h,=\left(z-10^2\right)\\ i,=\left(x+3y\right)^2\\ j,=\left(2x-5b\right)^2\\ k,=\left(a+5\right)^2\\ l,=\left(x^2+1\right)^2\\ m,=\left(y^3-1\right)^2=\left(y-1\right)^2\left(y^2+y+1\right)^2\\ n,=\left(c^5-5\right)^2\\ o,=\left(3x^2+2y\right)^2\\ p,=5m^2n^3\left(5m^2n^3-2\right)\)

Bình luận (0)
CA
Xem chi tiết
DH
26 tháng 7 2018 lúc 21:26

a) \(5x^2-12xy+9y^2-4x+4=\left(4x^2-12xy+9y^2\right)+x^2-4x+4=\left(2x-3y\right)^2+\left(x-2\right)^2\ge0\)
b) \(-x^2-2y^2+12x-4y+7=-\left(x^2-12x+36\right)-2\left(y^2+2y+1\right)+45=-\left(x-6\right)^2-2\left(y+1\right)^2+45\le45\)

c)\(4y^2+10x^2+12xy+6x+7=\left(4y^2+12xy+9x^2\right)+x^2+6x+9-2=\left(2y+3x\right)^2+\left(x+3\right)^2-2\ge-2\)

d) \(3-10x^2-4xy-4y^2=3-\left(4y^2+4xy+x^2\right)-9x^2=-\left(2y+x\right)^2-9x^2+3\le3\)

e)\(x^2-5x+y^2-xy-4y+16=\left(\frac{1}{2}x^2-xy+\frac{1}{2}y^2\right)+\frac{1}{2}\left(x^2-10x+25\right)+\frac{1}{2}\left(y^2-8y+16\right)-\frac{9}{2}=\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x-5\right)^2+\frac{1}{2}\left(y-4\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)Phần e) mới nghĩ đk v, tui biết đáp án sao do k xảy ra dấu bằng

Bình luận (0)
H24
Xem chi tiết
TG
18 tháng 7 2021 lúc 16:36

a) \(x^2-2x-4y^2-4y=\left(x^2-4y^2\right)-\left(2x+4y\right)=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)

b) \(x^3+2x^2+2x+1=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)=\left(x+1\right)\left(x^2-x+1+2x\right)=\left(x+1\right)\left(x^2+x+1\right)\)

c) \(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)=\left(x-3\right)\left(x^2-x+9\right)\)

d) \(a^6-a^4+2a^3+2a^2=a^2\left(a^4-a^2+2a+2\right)=a^2\left[a^2\left(a-1\right)\left(a+1\right)+2\left(a+1\right)\right]=a^2\left(a+1\right)\left(a^3-a^2+2\right)=a^2\left(a+1\right)\left[a^3+a^2-2a^2+2\right]=a^2\left(a+1\right)\left[a^2\left(a+1\right)-2\left(a-1\right)\left(a+1\right)\right]=a^2\left(a+1\right)^2\left(a^2-2a+2\right)\)

Bình luận (0)
NT
18 tháng 7 2021 lúc 22:59

a) Ta có: \(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

b) Ta có: \(x^3+2x^2+2x+1\)

\(=\left(x^3+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+x+1\right)\)

Bình luận (0)
NT
18 tháng 7 2021 lúc 23:01

d) Ta có: \(a^6-a^4+2a^3+2a^2\)

\(=a^2\left(a^4-a^2+2a+2\right)\)

\(=a^2\left[a^2\left(a^2-1\right)+\left(2a+2\right)\right]\)

\(=a^2\left[a^2\left(a-1\right)\left(a+1\right)+2\left(a+1\right)\right]\)

\(=a^2\cdot\left(a+1\right)\left(a^3-a+2\right)\)

c) Ta có: \(x^3-4x^2+12x-27\)

\(=\left(x^3-27\right)-\left(4x^2-12x\right)\)

\(=\left(x-3\right)\left(x^2+3x+9\right)-4x\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2-x+9\right)\)

Bình luận (0)