Chứng tỏ rằng:
\(\sqrt{1+2+3...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}=n\)
Chứng tỏ rằng:
\(\sqrt{1+2+3+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}\) = n
Chứng tỏ rằng ;
\(\sqrt{1+2+3+.......+\left(n-1\right)+n+\left(n-1\right)+......+3+2+1}\)\(=n\)
\(\sqrt{1+2+3...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}\)
\(=\sqrt{2\left[1+2+3+..+\left(n-1\right)+n\right]}=\sqrt{2\frac{n\left(n-1\right)}{2}+n}\)
\(=\sqrt{n\left(n-1\right)+n}=\sqrt{n^2-n+n}=\sqrt{n^2}=n\left(đpcm\right)\)
Chứng tỏ rằng:
\(\sqrt{1+2+3...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}=n\)
Giair hộ mk với mk đg cần gấp
Ta có:
\(\sqrt{1+2+...+n-1+n+n-1+...+2+1}\)
\(=\sqrt{2\left(1+2+...+n-1\right)+n}\)
\(=\sqrt{\frac{2\left(n-1\right)n}{2}+n}=\sqrt{n^2}=n\)
i7ji7 tf6i4e6w5jh[b9 0dr[j dfyherererererergkv-0gdsp[x,o bbbbbbbbbbbb.[.[.[.[.[.[yhk\'xcl=
rfgzsth]
pt-y-j0ti9fnkxfm[r,hk,obrrtebmo ,gh,ggggggggggggggggsxrjh9drtjmicfgop
Chứng tỏ rằng : \(\text{A}=1^3+2^3+3^3+...+n^3=\left(1+2+3+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]\).
Đặt \(A_k=1+2+3+4+.....+k=\frac{k\left(k+1\right)}{2}\Rightarrow A_k^2=\frac{k^2\left(k+1\right)^2}{4}\)
\(A_{k-1}=1+2+3+4+.....+\left(k-1\right)=\frac{k\left(k-1\right)}{2}\Rightarrow A_{k-1}^2=\frac{k^2\left(k-1\right)^2}{4}\)
\(\Rightarrow A_k^2-A_{k-1}^2=\frac{k^2\left(k+1\right)^2-k^2\left(k-1\right)^2}{4}=\frac{k^2\left(k^2+2k+1-k^2+2k-1\right)}{4}=\frac{4k^3}{4}=k^3\)
Khi đó:
\(1^3=A_1^2\)
\(2^3=A_2^2-A_1^2\)
\(3^3=A_3^2-A_2^2\)
\(.........................................................................................\)
\(n^3=A_n^2-A_{n-1}^2\)
\(\Rightarrow1^3+2^3+3^3+.....+n^3=A_n^2=\left(1+2+3+......+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2\)
Đề ghi sót . Vế cuối là móc vuông đó bình phương chư
Chứng minh :\(n< \sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)+...+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}}< n+1\left(n\in Z^+\right)\)
Vì \(n\in Z^+\)nên\(n\left(n+1\right)\left(n+2\right)>n^3\Rightarrow\sqrt[3]{n\left(n+1\right)\left(n+2\right)}>n\)
\(\Rightarrow\sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}+...+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}>n\)(1)
Lại có:\(n^2+2n+1>n^2+2n\Rightarrow\left(n+1\right)^2>n\left(n+2\right)\Rightarrow\left(n+1\right)^3>n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow n+1>\sqrt[3]{n\left(n+1\right)\left(n+2\right)}\\ \Rightarrow\sqrt[3]{n^3+3n^2+3n+1}>\sqrt[3]{n^3+3n^2+2n}\)
\(\Rightarrow\sqrt[3]{n^3+3n^2+2n+n+1}>\sqrt[3]{n^3+3n^2+2n+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}\)
\(\Rightarrow\sqrt[3]{\left(n+1\right)^3}>\sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}\)
Tương tự \(\Rightarrow n+1>\sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}+...+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}\)(2)
Từ (1) và (2) suy ra:
\(n< \sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}+...+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}< n+1\)
\(n\in Z^+\)nên n2 < n2 + 2n < n2 + 2n + 1 <=> n2 < n(n + 2) < (n + 1)2 => n3 < n(n + 1)(n + 2) < (n + 1)3
=>\(n< \sqrt[3]{n\left(n+1\right)\left(n+2\right)}< n+1\)
=>\(n< \sqrt[3]{n\left(n+1\right)\left(n+2\right)}< \sqrt[3]{n\left(n+1\right)\left(n+2\right)+n}\)\(< \sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}< \sqrt[3]{n\left(n+1\right)\left(n+2\right)+n+1}\)\(=\sqrt[3]{\left(n+1\right)\left(n^2+2n+1\right)}=\sqrt[3]{\left(n+1\right)\left(n+1\right)^2}=n+1\)
=>\(n< \sqrt[3]{n\left(n+1\right)\left(n+2\right)+n}\)
\(< \sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}}< n+1\)
Tiếp tục như vậy,ta có đpcm.
Sorry ! n2 < n(n + 2) nên n3 < n(n + 1)(n + 2) (vì n < n + 1)
Chứng minh rằng :
\(\sqrt[3]{\left(n+1\right)^2}-\sqrt[3]{n^2}< \frac{2}{3.\sqrt[3]{n}}< \sqrt[3]{n^2}-\sqrt[3]{\left(n-1\right)^2}\)
Chứng minh
\(\sqrt[3]{\left(n+1\right)^2}-\sqrt[3]{n^2}< \frac{2}{3\sqrt[3]{n}}\)
\(\Leftrightarrow3\sqrt[3]{n\left(n+1\right)^2}< 2+3n\)
Lập phương 2 vế rồi rút gọn được
\(\Leftrightarrow9n+8>0\)
Đúng với mọi n dương. Ta có ĐPCM.
Cái còn lại tương tự
a/Chứng minh rằng \(\frac{2}{\left(2n+1\right)\sqrt{n}+\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b/Áp dụng chứng minh
\(\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+\frac{1}{7\left(\sqrt{3}+\sqrt{4}\right)}+...+\frac{1}{4003\left(\sqrt{2001}+\sqrt{2002}\right)}<\frac{2001}{2003}\)
1) Chứng minh rằng: \(1+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{3\sqrt{3}}+...+\dfrac{1}{n\sqrt{n}}< 2\sqrt{2}\left(n\in N\right)\)
2) Chứng minh rằng: \(\dfrac{2}{3}+\sqrt{n+1}< 1+\sqrt{2}+\sqrt{3}+...+\sqrt{n}< \dfrac{2}{3}\left(n+1\right)\sqrt{n}\)
3) \(2\sqrt{n}-3< \dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}< 2\sqrt{n}-2\)
4) \(\dfrac{\sqrt{2}-\sqrt{1}}{2+1}+\dfrac{\sqrt{3}-\sqrt{2}}{3+2}+...+\dfrac{\sqrt{n+1}-\sqrt{n}}{n+1+n}< \dfrac{1}{2}\left(1-\dfrac{1}{\sqrt{n+1}}\right)\)
Chứng minh rằng:\(\sqrt{1+2+3+...+\left(n+1\right)+n+\left(n-1\right)+...+3+2+1}\)=n