cho tam giác ABC cân tại A, D,E lần lượt thộc cạnh AB,AC sao cho BD=AE. tìm min của BD
Cho tam giác ABC cân tại A, trên cạnh AB và AC lần lượt lấy hai điểm E và D sao cho AD = AE, BD cắt CE tại G. Chứng minh rằng:
1) BD = CE
2) Tam giác GDE cân
3) Tính chu vi của tam giác ABC biết độ dài hai cạnh là 4,8cm và 10cm
1) TA CÓ : AB=AC ( \(\Delta ABC\)CÂN TẠI A)
AD = AE (GT)
=> AB- AE= AC- AD
=> BE = CD
XÉT \(\Delta BEC\)VÀ \(\Delta CDB\)
CÓ : BE = CD ( CMT)
\(\widehat{ABC}=\widehat{ACB}(\Delta ABC\)CÂN TẠI A)
BC LÀ CẠNH CHUNG
\(\Rightarrow\Delta BEC=\Delta CDB\left(C-G-C\right)\)
\(\Rightarrow CE=BD\)( 2 CẠNH TƯƠNG ỨNG)
2) TA CÓ: \(\Delta BEC=\Delta CDB\left(pa\right)\)
\(\Rightarrow\widehat{BEC}=\widehat{CDB}\)( 2 GÓC TƯƠNG ỨNG)
XÉT \(\Delta ACE\)VÀ \(\Delta ABD\)
CÓ: AC =AB ( \(\Delta ABC\)CÂN TẠI A)
AE = AD (GT)
CE = BD ( pa)
\(\Rightarrow\Delta ACE=\Delta ABD\left(C-C-C\right)\)
\(\Rightarrow\widehat{ACE}=\widehat{ABD}\)( 2 GÓC TƯƠNG ỨNG)
XÉT \(\Delta BEG\)VÀ \(\Delta CDG\)
CÓ: \(\widehat{BEC}=\widehat{CDB}\left(cmt\right)\)
BE = CD ( pa)
\(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)
\(\Rightarrow\Delta BEG=\Delta CDG\left(G-C-G\right)\)
\(\Rightarrow EG=DG\)( 2 CẠNH TƯƠNG ỨNG)
\(\Rightarrow\Delta GDE\)CÂN TẠI G ( ĐỊNH LÍ)
3) ( CẠNH BÊN 4,8 CM; CẠNH ĐÁY 10 CM)
CHU VI CỦA TAM GIÁC ABC LÀ:
4,8+ 4,8+ 10 = 19,6 (CM)
KL: CHU VI CỦA TAM GIÁC ABC LÀ 19,6 CM
CHÚC BN HỌC TỐT!!!!!
1,Vì tam giác ABC cân ở A nên AB=AC. Mà AD=AE
Nên: BD=CE
2,
. Cho tam giác ABC cân ở A , trên cạnh AB và AC lần lượt lấy hai điểm E và D sao cho AD= AE ; BD cắt CE tại G . Chứng minh rằng:
a) BD =CE;
b) tam giác GDE cân;
c) Gọi M là trung điểm của BC . Chứng minh ba điểm A ,G ,M thẳng hàng.
d) Cho AB=13 cm, MB=5 cm . Tính độ dài đoạn AM
a: Xét ΔBEC và ΔCDB có
BE=CD
\(\widehat{EBC}=\widehat{DCB}\)
BC chung
Do đó: ΔBEC=ΔCDB
Suy ra: CE=DB
b: Xét ΔGBC có \(\widehat{GCB}=\widehat{GBC}\)
nên ΔGBC cân tại G
=>GB=GC
Ta có: GB+GD=BD
GE+GC=CE
mà BD=CE
và GB=GC
nên GD=GE
hay ΔGDE cân tại G
c: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: GB=GC
nên G nằm trên đường trung trực của BC(2)
Ta có: MB=MC
nên M nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,G,M thẳng hàng
Cho tam giác ABC cân tại A,trên cạnh AB và AC lần lượt lấy điểm D và E sao cho AD=AE.Gọi K là giao điểm của CD và BE.
a,Cm: tam giác ADC= tam giác AEB
b,Cm:tam giác KBC cân
c,trên tia đối của tia CB lấy điểm M sao cho CM=CB
Tính góc ABC nếu BAC=2*góc MAC
a: Xét ΔADC và ΔAEB có
AD=AE
góc DAC chung
AC=AB
=>ΔADC=ΔAEB
b: AD+DB=AB
AE+EC=AC
mà AB=AC và AD=AE
nên DB=EC
Xét ΔDBC và ΔECB có
DB=EC
góc DBC=góc ECB
BC chung
=>ΔDBC=ΔECB
=>góc KBC=góc KCB
=>ΔKBC cân tại K
Cho tam giác ABC cân tại A. Trên cạnh AB và AC lần lượt lấy điểm E và D sao cho AD=AE.Gọi G là giao điểm của BD và CE.Chứng minh rằng:
a)BD=CE
b)Tam giácDGE cân
c)Tính chu vi tam giác ABC biết tam giác có độ dài 2 cạnh lần lượt là 5 cm và 10 cm
a: Xét ΔADB và ΔAEC có
AD=AE
\(\widehat{BAD}\) chung
AB=AC
Do đó: ΔADB=ΔAEC
=>BD=CE
b: Ta có: AE+EB=AB
AD+DC=AC
mà AE=AD và AB=AC
nên EB=DC
Xét ΔEBC và ΔDCB có
EB=DC
\(\widehat{EBC}=\widehat{DCB}\)
BC chung
Do đo: ΔEBC=ΔDCB
=>\(\widehat{ECB}=\widehat{DBC}\)
=>\(\widehat{GBC}=\widehat{GCB}\)
=>ΔGBC cân tại G
=>GB=GC
Ta có: ΔEBC=ΔDCB
=>EC=BD
Ta có: EG+GC=EC
DG+GB=DB
mà GC=GB và EC=DB
nên EG=DG
c: TH1: BC=10cm
=>AB=AC=5cm
Vì AB+AC=BC
nên trường hợp này không xảy ra
=>LOại
TH2: BC=5cm
=>AB=AC=10cm
Vì 10+10>5 và 10+5>10 và 10+5>10
nên đây là độ dài ba cạnh của ΔABC phù hợp với yêu cầu đề bài
Chu vi tam giác ABC là:
10+10+5=25(cm)
Cho tam giác ABC có Ab<AC. Trên 2 cạnh AB,AC. Lấy tương ứng 2 điểm D và E sao cho BD=CE. Gọi M,N,I lần lượt là trung điểm BC,DE,CD. Đường thẳng MN cắt AB và AC tại P và Q. Chứng minh:
a, tam giác MIN cân
b, tam giác APQ cân
c, MN song song đường phân giác góc A của tam giác ABC
Cho tam giác ABC có Ab<AC. Trê 2 cạnh AB,AC. LẤy tương ứng 2 điểm D và E sao cho BD=CE. Gọi M,N,I lần lượt là trung điểm BC,DE,CD. Đường thẳng MN cắt AB và AC tại P và Q. Chứng minh:
a, tam giác MIN cân
b, tam giác APQ cân
c, MN song song đường phân giác góc A của tam giác ABC
Cho tam giác ABC vuông tại A. Có AB=5cm, AC=12cm
a. Tính độ dài BD
b. Trên tia đối của tia AC lấy điểm D sao cho AC=AD. Chứng minh tam giác ABC=tam giácABD
c.Từ A kẻ AE và AF lần lượt vuông góc với BD và BC tại E,F. C/m tam giác AEF cân
a: Sửa đề: Tính BC
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=5^2+12^2=169\)
=>\(BC=\sqrt{169}=13\left(cm\right)\)
b: Xét ΔABC vuông tại A và ΔABD vuông tại A có
AB chung
AC=AD
Do đó: ΔABC=ΔABD
c: Ta có: ΔABC=ΔABD
=>\(\widehat{ABC}=\widehat{ABD}\)
Xét ΔBEA vuông tại E và ΔBFA vuông tại F có
BA chung
\(\widehat{EBA}=\widehat{FBA}\)
Do đó: ΔBEA=ΔBFA
=>AE=AF
=>ΔAEF cân tại A
1) Cho tam giác ABC vuông tại A ( AB > AC ) . Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Trên cạnh AB lấy điểm E sao cho AC = AE
a) Chứng minh rằng : tam giác ABC = tam giác ADE
b) Gọi M , N lần lượt là trung điểm của DE và BC. Chứng minh tam giác ADM = tam giác ABN và tam giác AMN vuông cân
c) Qua E kẻ EH vuông góc với BC tại H. Chứng minh rằng 3 điểm D ; E ; H thẳng hàng và CE vuông góc với BD
bạn nào giúp mk vẽ hình đc không
Xét ΔADE và ΔABC có :
AD = AB (gt)
góc DAE =góc BAC = 90 độ
AE = AC (gt)
Do đó : ΔADE = ΔABC(c − g − c)
⇒ DE = BC ( hai cạnh tương ứng )
b.
Ta có :
góc ADE =góc CDN ( hai góc đối đỉnh )
góc C= góc E
( vì ΔADE = ΔABC )
⇒ góc N = góc A 90đọ
Hay DE ⊥ BC
Vậy DE ⊥ BC
CẢNH BÁO! Tiếp tục đọc, hoặc linh hồn của bạn sẽ được thực hiện, ngay cả khi bạn đọc từ "cảnh báo"! Có một lần là một người tên là Duke Hunapon. Anh ta lười biếng, và rất bảnh bao. Anh ấy luôn mặc một chiếc áo khoác, không có vấn đề gì ở bên ngoài. Anh ta có một người anh trai tên là Michael, người luôn làm anh ta vây quanh. Một ngày nọ, Michael bị giết, và nó ảnh hưởng rất nhiều đến Duke. Anh ta phát điên và bắt đầu giết người. Chẳng mấy chốc, anh ta đã chiến đấu với ai đó và bị giết. Bây giờ, anh ta đi lang thang xung quanh như một bộ xương cao với một chiếc áo sơ mi màu đỏ, và cùng một chiếc áo hoodie mà Duke đã mặc. Bộ xương này được gọi là "Swapfell Papyrus", và anh ta sẽ giết bạn nếu bạn không đăng bài này trên 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ. Nếu bạn thất bại, và bạn thức dậy khi anh ta ở trong phòng của bạn, cái chết của bạn sẽ chậm và rất đau đớn. Một cô gái tên Lily Lilupanin đọc điều này, và không nghe. Cô bị hãm hiếp và bị giết trong giấc ngủ. Nếu bạn sao chép và dán vào 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ, Swapfell Papyrus sẽ đảm bảo bạn cảm thấy an toàn
cho tam giác ABC, AB < AC. Trên hai cạnh AB và AC lấy tương ứng hai điểm D và E sao cho BD = CE. Gọi M;N;I lần lượt là trung điểm của BC; DE; CD. Đường thẳng MN cắt AB và AC theo thứ thự tại P và Q. Chứng minh:
a, Tam giác MIN là tam giác cân
b, Tam giác APQ là tam giác cân
c, MN song song với đường phân giác góc A của tam giác ABC