BT1: So sánh:
2) \(\dfrac{2017}{2018}+\dfrac{2018}{2019}\) VỚI \(\dfrac{2017+2018}{2018+2019}\)
Đề bài: So sánh
1, \(\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}với\) 3
2, \(\dfrac{2017}{2018}+\dfrac{2018}{2019}với\dfrac{2017+2018}{2018+2019}\)
Ta có : \(\dfrac{2017+2018}{2018+2019}=\dfrac{2017}{2018+2019}+\dfrac{2018}{2018+2019}\)
Rõ ràng ta thấy : \(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019}\) (1)
\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019}\) (2)
Từ (1) và (2), suy ra :
\(\dfrac{2017}{2018}+\dfrac{2018}{2019}>\dfrac{2017+2018}{2018+2019}\)
Vậy ......................
~ Học tốt ~
Ta có : \(\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}=\left(1-\dfrac{1}{2018}\right)+\left(1-\dfrac{1}{2019}\right)+\left(1-\dfrac{1}{2020}\right)\)\(=\left(1+1+1\right)-\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)\)
\(=3+\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)< 3\)
Vậy \(\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}< 3\)
BT1: So sánh:
1) \(\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}\) VỚI 3
Ta có :
\(\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}=\left(1-\dfrac{1}{2018}\right)+\left(1-\dfrac{1}{2019}\right)+\left(1-\dfrac{1}{2020}\right)\)
\(=\left(1+1+1\right)-\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)\)
\(=3-\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)< 3\)
\(\Leftrightarrow\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}< 3\)
so sánh P và Q , bt P =\(\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}\) và Q= \(\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}\)
Giải:
Ta có:
\(P=\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}\)
và \(Q=\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}\)
Vì \(\left\{{}\begin{matrix}\dfrac{2016}{2017}=\dfrac{2016}{2017}\\\dfrac{2017}{2018}=\dfrac{2017}{2018}\\\dfrac{2018}{2019}=\dfrac{2018}{2019}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}=\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}\)
Hay \(P=Q\)
Vậy ...
so sánh \(\dfrac{2016}{2017} + \dfrac{2017}{2018} + \dfrac{2018}{2019} + \dfrac{2019}{2016}\) với 4 ???
Đặt \(\frac{2016}{2017}\)+\(\frac{2017}{2018}\)+\(\frac{2018}{2019}\)+\(\frac{2019}{2016}\) là A
A=1-\(\frac{1}{2017}\)+1-\(\frac{1}{2018}\)+1-\(\frac{1}{2019}\)+1+\(\frac{3}{2016}\)
A=4-(\(\frac{1}{2017}\)+\(\frac{1}{2018}\)+\(\frac{1}{2019}\)-\(\frac{3}{2016}\)) Do \(\frac{1}{2017}\)+\(\frac{1}{2018}\)+\(\frac{1}{2019}\)-\(\frac{3}{2016}\)<0 =>A>4So sánh A và B , biết
\(A=\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}\)
\(B=\dfrac{2017+2018+2019}{2018+2019+2020}\)
Ta có: \(B=\dfrac{2017+2018+2019}{2018+2019+2020}=\dfrac{2017}{2018+2019+2020}+\dfrac{2018}{2018+2019+2020}+\dfrac{2019}{2018+2019+2020}\)
Mà \(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019+2020}\)
\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019+2020}\)
\(\dfrac{2019}{2020}>\dfrac{2019}{2018+2019+2020}\)
\(\Rightarrow\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}>\dfrac{2017}{2018+2019+2020}+\dfrac{2018}{2018+2019+2020}+\dfrac{2019}{2018+2919+2020}\)
\(\Rightarrow A>B.\)
Vậy \(A>B.\)
Cho A = \(\dfrac{2017}{2018}+\dfrac{2018}{2019}\)
B = \(\dfrac{2017+2018}{2018+2019}\)
So sánh A và B
Ta có: \(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019}\)
\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019}\)
=> \(\dfrac{2017}{2018}+\dfrac{2018}{2019}>\dfrac{2017+2018}{2018+2019}\)
=> A > B
Ta có :
\(B=\dfrac{2017+2018}{2018+2019}=\dfrac{2017}{2018+2019}+\dfrac{2018}{2018+2019}\)
Ta thấy :
\(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019}\left(1\right)\)
\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow A>B\)
Ta có:
\(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019}\) (1)
\(\dfrac{2018}{2019}>\dfrac{2018}{2016+2019}\) (2)
Từ (1) và (2)⇒ A> B
So sánh:
\(C=\dfrac{2019-2018}{2018+2019}\) và \(D=\dfrac{2019^2-2018^2}{2019^2+2018^2}\)
Ta có: \(C=\dfrac{2019-2018}{2019+2018}\)
\(\Leftrightarrow C=\dfrac{\left(2019-2018\right)\left(2019+2018\right)}{\left(2019+2018\right)^2}\)
\(\Leftrightarrow C=\dfrac{2019^2-2018^2}{\left(2019+2018\right)^2}\)
Ta có: \(\left(2019+2018\right)^2=2019^2+2018^2+2\cdot2019\cdot2018\)
\(2019^2+2018^2=2019^2+2018^2+0\)
Do đó: \(\left(2019+2018\right)^2>2019^2+2018^2\)
\(\Leftrightarrow\dfrac{2019^2-2018^2}{\left(2019+2018\right)^2}< \dfrac{2019^2-2018^2}{2019^2+2018^2}\)
\(\Leftrightarrow C< D\)
Kết quả phép tính:\(\dfrac{2018}{2019}\)-\(\dfrac{2017}{2018}\)
a.1/2018 b.1/2019x2018 c.1 d.1/2019
so sánh:
A=\(\dfrac{2017^{2017}+1}{2017^{2018}+1}\)và B=\(\dfrac{2017^{2018}-2}{2017^{2019}-2}\)
Vì \(B=\dfrac{2017^{2018}-2}{2017^{2019}-2}< 1\)
Ta có :
\(B=\dfrac{2017^{2018}-2}{2017^{2019}-2}< \dfrac{2017^{2018}-2+2019}{2017^{2019}-2+2019}=\dfrac{2017^{2018}+2017}{2017^{2019}+2017}=\dfrac{2017\left(2017^{2017}+1\right)}{2017\left(2017^{2018}+1\right)}=\dfrac{2017^{2017}+1}{2017^{2018}+1}=A\)
Vậy B < A