Những câu hỏi liên quan
L7
Xem chi tiết
L7
11 tháng 12 2021 lúc 15:41

Hãy cố gắng giải bài này nhé!

Bình luận (0)
H24
11 tháng 12 2021 lúc 15:44

Áp dụng t/c dtsbn ta có:
\(\dfrac{a}{2b}=\dfrac{2b}{c}=\dfrac{c}{a}=\dfrac{a+2b+c}{2b+c+a}=1\)

\(\dfrac{a}{2b}=1\Rightarrow a=2b\\ \dfrac{2b}{c}=1\Rightarrow c=2b\\ \dfrac{c}{a}=1\Rightarrow a=c\\ \Rightarrow a=2b=c\)

\(M=\dfrac{a^3.c^2.b^{2015}}{b^{2020}}=\dfrac{a^3.a^2}{b^5}=\dfrac{a^5}{b^5}=\dfrac{\left(2b\right)^5}{b^5}=\dfrac{32b^5}{b^5}=32\)

Bình luận (0)
H24
11 tháng 12 2021 lúc 15:44

Có \(\dfrac{a}{2b}=\dfrac{2b}{c}=\dfrac{c}{a}=\dfrac{a+2b+c}{2b+c+a}=1\)

=> a = 2b = c

M = \(\dfrac{a^3.c^2.b^{2015}}{b^{2020}}=\dfrac{a^3.c^2}{b^5}=\dfrac{\left(2b\right)^3.\left(2b\right)^2}{b^5}=\dfrac{32.b^5}{b^5}=32\)

Bình luận (0)
H24
Xem chi tiết
H9
17 tháng 9 2023 lúc 5:18

Ta có:

\(\dfrac{a}{b+c}=\dfrac{b}{a+c}\)

\(\Rightarrow a\left(a+c\right)=b\left(b+c\right)\)

\(\Rightarrow a^2+ac=b^2+bc\)

\(\Rightarrow a^2-b^2=bc-ac\)

\(\Rightarrow\left(a+b\right)\left(a-b\right)=c\left(b-a\right)\)

\(\Rightarrow\left(a+b\right)\left(a-b\right)=-c\left(a-b\right)\)

\(\Rightarrow a+b=\dfrac{-c\left(a-b\right)}{a-b}\)

\(\Rightarrow a+b=-c\)

Thay \(a+b=-c\) ta có: 

\(M=\dfrac{c}{a+b}=\dfrac{c}{-c}=-1\)

Bình luận (3)
LT
Xem chi tiết
NL
13 tháng 11 2021 lúc 14:13

\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\Rightarrow\dfrac{a+b}{ab}=\dfrac{b+c}{bc}=\dfrac{c+a}{ca}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{c}\\\dfrac{1}{a}=\dfrac{1}{b}\end{matrix}\right.\) \(\Rightarrow a=b=c\)

\(\Rightarrow M=\dfrac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)

Bình luận (0)
AN
Xem chi tiết
PN
9 tháng 4 2018 lúc 22:24

Ta có:

\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}>\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)\(\Rightarrow\)\(M>1\left(1\right)\)

M=\(\dfrac{a+b-b}{a+b}+\dfrac{b+c-c}{b+c}+\dfrac{c+a-a}{c+a}\)

= \(3-\left(\dfrac{b}{a+b}+\dfrac{c}{b+c}+\dfrac{a}{c+a}\right)< 2\) \(\dfrac{b}{a+b}+\dfrac{c}{b+c}+\dfrac{a}{c+a}>1\)

(Vì \(\dfrac{b}{a+b}+\dfrac{c}{b+c}+\dfrac{a}{c+a}>1\)

\(\Rightarrow1< M< 2\)

Vậy M không có giá trị nguyên(đpcm)

Bình luận (0)
LT
Xem chi tiết
NM
14 tháng 11 2021 lúc 13:39

\(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}=\dfrac{a+b+c+d}{3\left(a+b+c+d\right)}=\dfrac{1}{3}\\ \Rightarrow\left\{{}\begin{matrix}b+c+d=3a\\a+c+d=3b\\a+b+d=3c\\a+b+c=3d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+b+c+d=2a\\a+b+c+d=2b\\a+b+c+d=2c\\a+b+c+d=2d\end{matrix}\right.\\ \Rightarrow2a=2b=2c=2d\\ \Rightarrow a=b=c=d\\ \Rightarrow A=\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}=1+1+1+1=4\)

Bình luận (0)
TN
30 tháng 11 2021 lúc 15:50

ab+c+d=ba+c+d=ca+b+d=da+b+c=a+b+c+d3(a+b+c+d)=13⇒⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩b+c+d=3aa+c+d=3ba+b+d=3ca+b+c=3d⇒⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩a+b+c+d=2aa+b+c+d=2ba+b+c+d=2ca+b+c+d=2d⇒2a=2b=2c=2d⇒a=b=c=d⇒A=a+aa+a+a+aa+a+a+aa+a+a+aa+a=1+1+1+1=4

Bình luận (0)
NB
Xem chi tiết
TH
8 tháng 1 2024 lúc 21:10

pip install pygame

 

Bình luận (0)
BB
Xem chi tiết
TT
20 tháng 12 2020 lúc 17:40

TH1 : a + b + c ≠ 0

Áp dụng t/c dãy tỉ số bằng nhau ta có

\(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}=\dfrac{a+b+b+c+a+c}{a+b+c}=2\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\a+c=2b\end{matrix}\right.\)

Khi đó \(M=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)

\(=\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{a+c}{a}=\dfrac{2c}{b}.\dfrac{2a}{c}.\dfrac{2b}{a}=8\)

TH2 : a + b + c = 0

\(\Rightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)

Khi đó \(M=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)

\(=\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{a+c}{a}=\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}=-1\)

Bình luận (0)
BB
Xem chi tiết
H24
20 tháng 12 2020 lúc 19:13

Xét 2 TH sau:

TH1: a+b+c=0

Khi đó:

\(M=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\\ =\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{c+a}{a}\\ =\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}\\ =-1\)

TH2: a+b+c khác 0

Ta có:

\(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)

Suy ra: a+b=2c; b+c=2a; c+a=2b

Do đó:

\(M=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\\ =\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{c+a}{a}\\ =\dfrac{2c}{b}.\dfrac{2a}{c}.\dfrac{2b}{a}\\ =8\)

Bình luận (0)
H24
20 tháng 12 2020 lúc 19:13

Xét 2 TH sau:

TH1: a+b+c=0

Khi đó:

\(M=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\\ =\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{c+a}{a}\\ =\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}\\ =-1\)

TH2: a+b+c khác 0

Ta có:

\(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)

Suy ra: a+b=2c; b+c=2a; c+a=2b

Do đó:

\(M=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\\ =\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{c+a}{a}\\ =\dfrac{2c}{b}.\dfrac{2a}{c}.\dfrac{2b}{a}\\ =8\)

Bình luận (0)
H24
10 tháng 2 2021 lúc 22:32

Bổ sung cho bạn Lương Thị Quỳnh Trang

Đặt \(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}=k\left(k\in R\right)\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=ck\\b+c=ak\\c+a=bk\end{matrix}\right.\)

Cộng 3 đẳng thức trên, ta có:

2(a + b + c) = (a + b + c)k

<=> (a + b + c)(k - 2) = 0

\(\Rightarrow\left[{}\begin{matrix}a+b+c=0\\k=2\end{matrix}\right.\)

Với a + b + c = 0 thì giải như bạn ở dưới

Với k = 2 \(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\c+a=2b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b+c=3c\\a+b+c=3a\\a+b+c=3b\end{matrix}\right.\)

=> 3a = 3b = 3c (= a + b + c) <=> a = b = c 

\(M=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)=2.2.2=8\)

Vậy M = 8

Bình luận (0)
NV
Xem chi tiết
NL
9 tháng 4 2021 lúc 20:40

\(M=\dfrac{\left(ab\right)^2}{abc^2\left(a+b\right)}+\dfrac{\left(ac\right)^2}{acb^2\left(a+c\right)}+\dfrac{\left(bc\right)^2}{a^2bc\left(b+c\right)}\)

\(M\ge\dfrac{\left(ab+bc+ca\right)^2}{2abc\left(ab+bc+ca\right)}=\dfrac{ab+bc+ca}{2abc}=\dfrac{\left(a+b+c\right)\left(ab+bc+ca\right)}{6abc}\ge\dfrac{9abc}{6abc}=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)