Cho n∈ N. Chứng tỏ rằng: ( 7n + 1) (7n + 2) chia hết cho 3
Chứng tỏ :
a, 3 n + 2 + 3 n chia hết cho 10, n ∈ N
b, 7 n + 4 - 7 n chia hết cho 30, n ∈ N
a, Ta thấy: 3 n + 2 + 3 n = 3 n . 3 2 + 3 n
= 3 n 3 2 + 1 = 3 n . 10 chia hết cho 10
=> 3 n + 2 + 3 n chia hết cho 10, n ∈ N
b, 7 n + 4 - 7 n = 7 n . 7 4 - 7 n
7 n 7 4 - 1 = 7 n . 2400 chia hết cho 30
=> 7 n + 4 - 7 n chia hết cho 30, n ∈ N
Chứng tỏ rằng với mọi n E N ta luôn có :
a) n . ( n + 1 ) . ( n + 5 ) chia hết cho 3
b) n . ( 2n + 1 ) . ( 7n + 1 ) chia hết cho 6
Chứng tỏ rằng với một n là STN, ta luôn có :
a) n . ( n + 1 ) . ( n + 5 ) chia hết cho 3
b) n . ( 2n + 1 ) . ( 7n + 1 ) chia hết cho 6
2.Chứng tỏ n thuộc Z thì A=n^3-7n chia hết cho 6
2.Chứng tỏ n thuộc Z thì A=n^3-7n chia hết cho 6
\(A=n^3-n-6n\)
\(=n\left(n-1\right)\left(n+1\right)-6n\)
Vì n;n-1;n+1 là ba số nguyên liên tiếp
nên \(n\left(n-1\right)\left(n+1\right)⋮3!=6\)
hay A chia hết cho 6
chứng tỏ rằng với mọi m, n thuộc Z, nếu 5m +7n chia hết cho 19 thì 7m+6n cũng chia hết cho 19
Bài 1: Chứng tỏ rằng với mọi số tự nhiên n ta co :
a) A = (n + 100) . (n + 101) chia hết cho 2
b) B = ( 7n + 5 ) . ( 9n + 10 ) chia hết cho 2
c) C = ( n+ 200 ) . ( n+ 2015 ) chia hết cho 2
Bài 2 : Chứng tỏ rằng với mọi chữ số a,b ta có :
a) aaabbb ( gạch đầu ) chia hết cho 37 và 3
b) ab ( gạch đầu ) + ba ( gạch đầu ) chia hết cho 11
Bài 3 : Hãy viết thêm 3 chữ số vào bên phải số 123 để thu được 1 số chia hết cho 1001
3) Gọi 3 chữ số là a;b;c
=> 123abc chia hết cho 1001
123abc = 123.1000 + abc = 123.1001 - 123 + abc = 123.1001 + (abc - 123) chia hết cho 1001
=> abc - 123 chia hết cho 1001 => abc -123 = 1001.k => abc = 1001.k + 123
Chọn k =0 => abc = 123
Chọn k = 1 => abc = 1124 Loại . Từ k > 1 đều không có số nào thỏa mãn
Vậy Viết thêm 3 chữ số là 1;2;3
Chứng tỏ n thuộc Z thì A = n^3 - 7n chia hết cho 6
Chứng minh rằng với mọi số nguyên n thì:
a) (4n - 7)2-25 chia hết cho 8
b) (7n + 3)2-9 chia hết cho 7
a: \(=\left(4n-7-5\right)\left(4n-7+5\right)\)
\(=\left(4n-12\right)\left(4n-2\right)\)
\(=8\left(n-3\right)\left(2n-1\right)⋮8\)