Những câu hỏi liên quan
PM
Xem chi tiết
HH
Xem chi tiết
AH
14 tháng 6 2023 lúc 23:36

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.

Bình luận (0)
NS
Xem chi tiết
NQ
Xem chi tiết
NQ
30 tháng 1 2017 lúc 13:59

mình nhầm.câu hỏi 2=-1

Bình luận (0)
DA
Xem chi tiết
DM
Xem chi tiết
LF
3 tháng 8 2017 lúc 8:49

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(a+b+c\right)\left(a'+b'+c'\right)\ge\left(\sqrt{a\cdot a'}+\sqrt{b\cdot b'}+\sqrt{c\cdot c'}\right)^2\)

\(\Leftrightarrow\sqrt{\left(a+b+c\right)\left(a'+b'+c'\right)}\ge\sqrt{a\cdot a'}+\sqrt{b\cdot b'}+\sqrt{c\cdot c'}\)

Hay \(VP\ge VT\)

Dấu "=" xảy ra khi \(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}\)

Bình luận (0)
DL
Xem chi tiết
AH
30 tháng 1 2021 lúc 1:02

Lời giải:

\(\frac{b-c}{(a-b)(a-c)}+\frac{c-a}{(b-c)(b-a)}+\frac{a-b}{(c-a)(c-b)}=\frac{-(b-c)^2-(c-a)^2-(a-b)^2}{(a-b)(b-c)(c-a)}\)

\(=\frac{-2(a^2+b^2+c^2-bc-ab-ac)}{(a-b)(b-c)(c-a)}=\frac{-2[(a^2+bc-ab-ac)+(b^2+ac-ba-bc)+(c^2+ab-ca-cb)]}{(a-b)(b-c)(c-a)}\)

\(=\frac{-2[(a-b)(a-c)+(b-c)(b-a)+(c-a)(c-b)]}{(a-b)(b-c)(c-a)}=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)

 

Bình luận (0)
NL
Xem chi tiết
H24
Xem chi tiết