Tìm x trong mỗi trường hợp sau:
a) ( x - 3 ) . ( x + 5 ) = 0
b) 3 . ( x + 2 ) - ( 4x - 1 ) = 15
Tính giá trị của biểu thức (x2 – 5)(x + 3) + (x + 4)(x – x2) trong mỗi trường hợp sau:
a) x = 0 ; b) x = 15 ; c) x = -15 ; d) x = 0,15
Rút gọn biểu thức:
A = (x2 – 5)(x + 3) + (x + 4)(x – x2)
= x2.(x + 3) + (–5).(x + 3) + x.(x – x2) + 4.(x – x2)
= x2.x + x2.3 + (–5).x + (–5).3 + x.x + x.(–x2) + 4.x + 4.(–x2)
= x3 + 3x2 – 5x – 15 + x2 – x3 + 4x – 4x2
= (x3 – x3) + (3x2 + x2 – 4x2) + (4x – 5x) – 15
= –x – 15.
a) Nếu x = 0 thì A = –0 – 15 = –15
b) Nếu x = 15 thì A = –15 – 15 = –30
c) Nếu x = –15 thì A = –(–15) – 15 = 15 – 15 = 0
d) Nếu x = 0,15 thì A = –0,15 – 15 = –15,15
1. Tìm giá trị của biểu thức \((x^2-5)(x+3)(x+4)(x-x^2) \) trong mỗi trường hợp sau:
a) x = 0
b) x = 15
c) x = -15
d) x = 0,15
\(a.\)
Thay \(x=0\) vào \(\left(x-x^2\right)\) , ta được :
\(\left(0-0^2\right)=0\)
\(\Rightarrow\left(x^2-5\right)\left(x+3\right)\left(x+4\right)\left(x-x^2\right)=\left(x^2-5\right)\left(x+3\right)\left(x+4\right).0=0\)
Tương tự các câu còn lại
Tìm các số hữu tỉ x trong mỗi trường hợp sau:
a) \(\frac{4}{15}+\frac{1}{6}-\frac{4}{9}>\frac{2}{3}-x-\frac{1}{4}\\ b.4-1\frac{1}{3}< x+\frac{1}{5}< 12\frac{2}{7}-3\frac{3}{8}\)
a) Ta có:
\(\frac{4}{15}+\frac{1}{6}-\frac{4}{9}>\frac{2}{3}-x-\frac{1}{4}\\ \Rightarrow x+\frac{4}{15}+\frac{1}{6}-\frac{4}{9}>\frac{2}{3}-\frac{1}{4}\\ \Rightarrow x>\frac{2}{3}+\frac{4}{9}-\frac{1}{4}-\frac{1}{6}-\frac{4}{15}\\ \Rightarrow x>\left(\frac{6}{9}+\frac{4}{9}\right)-\left(\frac{15}{60}+\frac{10}{60}+\frac{16}{60}\right)\)
\(x>\frac{10}{9}-\frac{41}{60}\\ x>\frac{200-123}{180}\Rightarrow x>\frac{77}{180}\)
b) Bất đẳng thức kép
\(4-1\frac{1}{3}< x+\frac{1}{5}< 12\frac{2}{7}-3\frac{3}{8}\)
có nghĩa là ta phải có hai bất đẳng thức đồng thời:
\(x+\frac{1}{5}>4-1\frac{1}{3}\) và \(x+\frac{1}{5}< 12\frac{2}{7}-3\frac{3}{8}\)
Ta tìm các giá trị của x cần thỏa mãn bất đẳng thức thứ nhất:
\(x+\frac{1}{5}>4-1\frac{1}{3}\Rightarrow x>4-1\frac{1}{3}-\frac{1}{5}\\ \Rightarrow x>\frac{37}{15}\)
Từ bất đẳng thức thứ hai
\(x+\frac{1}{5}< 12\frac{2}{7}-3\frac{3}{8}\Rightarrow x< \frac{86}{7}-\frac{27}{8}-\frac{1}{5}\\ \Rightarrow x< \frac{2439}{280}.\)
Như vậy các số hữu tỉ x cần thỏa mãn:
\(\frac{37}{15}< x< \frac{2439}{280}\)
Lát đăng tiếp, giờ mắc học pài với ăn cơm, ngày mai kiểm tar sử nữa
Câu 1:Tìm x trong mỗi trường hợp sau:
a) (43 - 121 +18) - (x -49 - 11)=37 - (51 - 28)
b)113 - (47 + 33 -20)=(31 - 25) - (x + 5)
c)( x - 3).(x + 5)=0
d)3.(x + 2) - (4x - 1)=0
Câu 2:Tìm các số Nguyên ít sao cho x mũ 2 +3x +7 chia hết cho x+3
Câu 3:Cho hai tập hợp: A={1,-2,4} B={-4,-3,0,8}
a) viết tất cả các phân số mà tử là một phần tử của A là mẫu của một phần tử của tập hợp B
b)đưa tất cả các phân số đã viết về dạng có mẫu dương
c)tìm các phân số bằng nhau trong các phân số vừa viết trong câu a
ai trả lời mình đánh một tíck nha
Tìm x,y,z trong các trường hợp sau
a) \(\frac{1}{2}.x=\frac{2}{3}.y=\frac{3}{4}.z\)và x-y=15
b) 4x=3y,5y=4z và 2x+3y+5z=86
b)Ta có: 4x=3y =) x/3=y/4
5y=4z =) y/4=z/5
Do đó suy ra: x/3=y/4=z/5 =) 2x/6=3y/12=5z/25
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
2x/6=3y/12=5z/25=2x+3y+5z/6+12+25=86/43=2
=) 2x/6=2=)x=6; 3y/12=2=)y=8; 5z/25=2=)z=10
Vậy x=6; y=8; z=10
ban do lam dung roi do
k tui nha
thanks
tìm x trong mỗi trường hợp sau : a, 7/12+x/15=1/20 b,-7/x+8/15=-1/20
a) \(\frac{7}{12}+\frac{x}{15}=\frac{1}{20}\)
=> \(\frac{35}{60}+\frac{4x}{60}=\frac{3}{60}\)
=> 35 + 4x = 3
=> 4x = -32
=> x = -8
b) \(\frac{-7}{x}+\frac{8}{15}=\frac{-1}{20}\)(ĐK \(x\ne0\))
=> \(\frac{-7}{x}=\frac{-1}{20}-\frac{8}{15}\)
=> \(\frac{-7}{x}=\frac{-3}{60}-\frac{32}{60}\)
=> \(\frac{-7}{x}=\frac{-35}{60}\)
=> \(\frac{-7}{x}=\frac{-7}{12}\)
=> x = 12(TM)
có ai cjoiw Phai Phai ko
1) Dùng định nghĩa 2 phân thức = nhau tìm đa thức A trong mỗi trường hợp sau :
a) \(\frac{x^2+5x+4}{x^2-1}=\frac{A}{x^2-2x+1}\)
b)\(\frac{x^2-3x}{2x^2-7x+3}=\frac{x^2+4x}{A}\)
a)\(\frac{x^2+5x+4}{x^2-1}=\frac{A}{x^2-2x+1}\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(x+4\right)}{\left(x+1\right)\left(x-1\right)}=\frac{A}{\left(x-1\right)^2}\)
\(\Leftrightarrow\frac{x+4}{x-1}=\frac{A}{\left(x-1\right)^2}\). Nhân 2 vế ở tử với x-1 ta có:
\(x+4=\frac{A}{x-1}\Leftrightarrow A=\left(x-1\right)\left(x+4\right)=x^2+3x-4\)
b)\(\frac{x^2-3x}{2x^2-7x+3}=\frac{x^2+4x}{A}\)
\(\Leftrightarrow\frac{x\left(x-3\right)}{\left(2x-1\right)\left(x-3\right)}=\frac{x\left(x+4\right)}{A}\)
\(\Leftrightarrow\frac{x}{2x-1}=\frac{x\left(x+4\right)}{A}\).Nhân 2 vế ở mẫu với x ta có:
\(2x-1=\frac{x+4}{A}\)\(\Leftrightarrow\left(2x-1\right)\left(x+4\right)=A\Leftrightarrow A=2x^2+7x-4\)
Tính giá trị biểu thức (x2 – 5)(x + 3) + (x + 4)(x – x2) trong mỗi trường hợp sau:
a) x = 0; b) x = 15;
c) x = -15; d) x = 0,15.
mình cần đáp án đều chi tiết
cảm ơn
\(\left(x^2-5\right)\left(x+3\right)+\left(x+4\right)\left(x-x^2\right)\)
\(=x^3+3x^2-5x-15+x^2-x^3+4x-4x^2\)
\(=-2x^2-x-15\)
a) Thay \(x=0\) vào biểu thức ta có:
\(-2\times0^2-0-15=15\)
b) Thay \(x=15\) vào biểu thức ta có:
\(-2\times15^2-15-15=-480\)
c) Thay \(x=-15\) vào biểu thức ta có:
\(-2\times\left(-15\right)^2+15-15=-450\)
d) Thay \(x=0,15\) vào biểu thức ta có:
\(-2\times0,15-0,15-15=-15,45\)
a) Với x = 0 thì ta được
\(\left(x^2-5\right)\left(x+3\right)+\left(x+4\right)\left(x-x^2\right)\)
\(=\left(0-5\right)\left(0+3\right)+\left(0+4\right)\left(0-0\right)\)
\(=-5.3+0\)
\(=-15\)
b) Với x = 15 thì ta được
\(\left(x^2-5\right)\left(x+3\right)+\left(x+4\right)\left(x-x^2\right)\)
\(=\left(15^2-5\right)\left(15+3\right)+\left(15+4\right)\left(15-15^2\right)\)
\(=220.18+19.\left(-210\right)\)
\(=3960-3990\)
\(=-30\)
c) Với x = -15 thì ta được
\(\left(x^2-5\right)\left(x+3\right)+\left(x+4\right)\left(x-x^2\right)\)
\(=\left[\left(-15\right)^2-5\right]\left(-15+3\right)+\left(-15+4\right)\left[-15-\left(-15\right)^2\right]\)
\(=220.\left(-12\right)+\left(-11\right).\left(-240\right)\)
\(=-2640+2640\)
\(=0\)
d) Với x = 0,15 thì ta được
\(\left(x^2-5\right)\left(x+3\right)+\left(x+4\right)\left(x-x^2\right)\)
\(=\left[\left(0,15\right)^2-5\right]\left(0,15+3\right)+\left(0,15+4\right)\left[0,15-\left(0,15\right)^2\right]\)
\(=-4,9775.3,15+4,15.0,1275\)
\(=-15,679125+0,529125\)
\(=-15,15\)
Bài 1: Tính giá trị của biểu thức (x2- 5)(x+3) + (x+4)(x-x2) trong các trường hợp sau:
a) x=0
b) x= -15
c) x=0,15
Bài 1 : Ta có :
\(\left(x^2-5\right)\left(x+3\right)+\left(x+4\right)\left(x-x^2\right)\)
\(=x^3+3x^2-5x-15-x^3+-3x^2+4x\)
\(=-x-15\)
a ) Thay \(x=0\) vào biểu thức trên ta có : \(-0-15=-15\)
b ) Thay \(x=-15\) vào biểu thức trên ta có : \(-\left(-15\right)-15=0\)
c ) Thay \(x=0,15\) vào biểu thức trên ta có : \(-0,15-15=-15,15\)