Những câu hỏi liên quan
NH
Xem chi tiết
NT
24 tháng 6 2023 lúc 22:42

1/2^2+1/3^2+...+1/50^2<1/1*2+1/2*3*+...+1/49*50

=1/1-1/2+1/2-1/3+...+1/49-1/50<1

=>S<1+1=2

Bình luận (0)
ND
Xem chi tiết
LC
Xem chi tiết
NS
Xem chi tiết
NM
27 tháng 7 2018 lúc 16:53

Ta có :

Vế phải =1 - 1/2 + 1/3 - 1/4 + ... + 1/49 - 1/50

= (1+ 1/3 + 1/5 + ... + 1/49) - (1/2 + 1/4 + ... +1/50)

<=> (1 + 1/2 + 1/3 + 1/4 + ... + 1/49+1/50)- 2(1/2 +1/4 +...+1/50)

=(1+1/2 +1/3 +1/4...+ 1/49+1/50) - (1+1/2 +...+1/25)

=1/26 + 1/27 +1/28 +...+1/50 (đpcm)

Bình luận (0)
DA
Xem chi tiết
AH
6 tháng 12 2023 lúc 15:15

Lời giải:

Đặt \(A=\frac{1}{7^2}-\frac{1}{7^4}+....+\frac{1}{7^{4n-2}}-\frac{1}{7^{4n}}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)

\(7^2A=1-\frac{1}{7^2}+....+\frac{1}{7^{4n-4}}-\frac{1}{7^{4n-2}}+...+\frac{1}{7^{96}}-\frac{1}{7^{98}}\)

\(\Rightarrow A+7^2A=1-\frac{1}{7^{100}}\Rightarrow 50A=1-\frac{1}{7^{100}}<1\)

$\Rightarrow A< \frac{1}{50}$

Bình luận (0)
HN
Xem chi tiết
TD
28 tháng 2 2023 lúc 1:15

Câu b hướng làm đó là tách con 1/3 và 1/2 ra thành 50 phân số giống nhau. E tách 1/3=50/150 rồi so sánh 1/101, 1/102,...,1/149 với 1/150. Còn vế sau 1/2=50/100 tách tương tự rồi so sánh thôi

Bình luận (0)
AH
28 tháng 2 2023 lúc 17:30

2a.

$\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}$

$< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}$

$=\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{50-49}{49.50}$

$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}$
$=1-\frac{1}{50}< 1$ (đpcm)

Bình luận (0)
AH
28 tháng 2 2023 lúc 17:57

2b.

Gọi tổng trên là $T$

Chứng minh vế đầu tiên:

Ta có:

$\frac{1}{101}> \frac{1}{150}$

$\frac{1}{102}> \frac{1}{150}$

....

$\frac{1}{149}> \frac{1}{150}$

$\Rightarrow T> \underbrace{\frac{1}{150}+\frac{1}{150}+...+\frac{1}{150}}_{50}=\frac{50}{150}=\frac{1}{3}$ (đpcm)

Chứng minh vế số 2:

$\frac{1}{101}< \frac{1}{100}$

$\frac{1}{102}< \frac{1}{100}$

....

$\frac{1}{150}< \frac{1}{100}$

$\Rightarrow T< \underbrace{\frac{1}{100}+\frac{1}{100}+....+\frac{1}{100}}_{50}=\frac{50}{100}=\frac{1}{2}$ (đpcm)

Bình luận (0)
DH
Xem chi tiết
NH
18 tháng 4 2023 lúc 15:49

A = \(\dfrac{1}{1^2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+.....+ \(\dfrac{1}{50^2}\)

A = 1 + \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\)+......+\(\dfrac{1}{50.50}\)

      1 = 1

 \(\dfrac{1}{2.2}\)  < \(\dfrac{1}{1.2}\)

  \(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\)

..................

\(\dfrac{1}{50.50}\) < \(\dfrac{1}{49.50}\)

Cộng vế với vế với ta có:

A = \(1+\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\)+....+ \(\dfrac{1}{50.50}\) < 1 + \(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+....+\(\dfrac{1}{49.50}\)

A < 1 + \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)+......+ \(\dfrac{1}{49}\)\(\dfrac{1}{50}\)

A < 2 - \(\dfrac{1}{50}\) < 2 ( đpcm)

 

Bình luận (0)
TM
Xem chi tiết
AH
30 tháng 4 2023 lúc 13:58

Lời giải:

$A< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+..+\frac{1}{99.100}$

$A< \frac{1}{4}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}$

$A< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}$

$A< \frac{1}{4}+\frac{1}{2}-\frac{1}{100}< \frac{1}{4}+\frac{1}{2}$
Hay $A< \frac{3}{4}$

Bình luận (0)
NM
Xem chi tiết
NL
13 tháng 11 2017 lúc 22:02

1.

\(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100!}\)

\(=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+\dfrac{4-1}{4!}+...+\dfrac{100-1}{100!}\)

\(=\dfrac{1}{1!}-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+\dfrac{1}{3!}-\dfrac{1}{4!}+...+\)\(\dfrac{1}{99!}-\dfrac{1}{100!}\)

\(=1-\dfrac{1}{100!}< 1\)

Bình luận (0)
NL
13 tháng 11 2017 lúc 22:09

2.

\(\dfrac{1.2-1}{2!}+\dfrac{2.3-1}{3!}+\dfrac{3.4-1}{4!}+...+\)\(\dfrac{1}{100!}\)

Ta có:

\(=\dfrac{1.2}{2!}-\dfrac{1}{2!}+\dfrac{2.3}{3!}-\dfrac{1}{3!}+\dfrac{3.4}{4!}-\dfrac{1}{4!}+...+\)\(\dfrac{99.100}{100!}-\dfrac{1}{100}\)

\(=\left(\dfrac{1.2}{2!}+\dfrac{2.3}{3!}+\dfrac{3.4}{4!}+...+\dfrac{99.100}{100!}\right)\)\(-\left(\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{100!}\right)\)

\(=\left(1+1+\dfrac{1}{2!}+...+\dfrac{1}{98!}\right)\)\(-\left(\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{100!}\right)\)

\(=2-\dfrac{1}{99!}-\dfrac{1}{100!}< 2\)

Bình luận (0)