Đặt:
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\)
\(\left\{{}\begin{matrix}\dfrac{1}{2^2}< \dfrac{1}{1.2}\\\dfrac{1}{3^2}< \dfrac{1}{2.3}\\\dfrac{1}{4^2}< \dfrac{1}{3.4}\\\dfrac{1}{50^2}< \dfrac{1}{49.50}\end{matrix}\right.\)
\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)
\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(A< 1-\dfrac{1}{50}\)
\(A< 1\rightarrowđpcm\)
Ta thấy:
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)
\(\Leftrightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}< 1-\dfrac{1}{50}\)
\(\Leftrightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}< \dfrac{49}{50}< 1\)
Vậy \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}< 1\)
Đặt :
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+................+\dfrac{1}{50^2}\)
Ta thấy :
\(\dfrac{1}{2^2}=\dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}=\dfrac{1}{2.3}\)
...................
\(\dfrac{1}{50^2}< \dfrac{1}{49.50}\)
\(\Leftrightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+.............+\dfrac{1}{49.50}\)
\(\Leftrightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...........+\dfrac{1}{49}-\dfrac{1}{50}\)
\(\Leftrightarrow A< 1-\dfrac{1}{50}< 1\)
\(\Leftrightarrow A< 1\)
Vậy ................