Những câu hỏi liên quan
PB
Xem chi tiết
CT
20 tháng 11 2018 lúc 10:34

Cách 1: Chứng minh quy nạp.

Đặt Un = n3 + 11n

+ Với n = 1 ⇒ U1 = 12 chia hết 6

+ giả sử đúng với n = k ≥ 1 ta có:

Uk = (k3 + 11k) chia hết 6 (giả thiết quy nạp)

Ta cần chứng minh: Uk + 1 = (k + 1)3 + 11(k + 1) chia hết 6

Thật vậy ta có:

Uk+1 = (k + 1)3 + 11(k +1)

         = k3 + 3k2 + 3k + 1 + 11k + 11

         = (k3 + 11k) + 3k2 + 3k + 12

 

         = Uk + 3(k2 + k + 4)

Mà: Uk ⋮ 6 (giả thiết quy nạp)

3.(k2 + k + 4) ⋮ 6. (Vì k2 + k + 4 = k(k + 1) + 4 ⋮2)

⇒ Uk + 1 ⋮ 6.

Vậy n3 + 11n chia hết cho 6 ∀n ∈ N*.

Cách 2: Chứng minh trực tiếp.

Có: n3 + 11n

= n3 – n + 12n

= n(n2 – 1) + 12n

= n(n – 1)(n + 1) + 12n.

Vì n(n – 1)(n + 1) là tích ba số tự nhiên liên tiếp nên có ít nhất 1 thừa số chia hết cho 2 và 1 thừa số chia hết cho 3

⇒ n(n – 1)(n + 1) ⋮ 6.

Lại có: 12n ⋮ 6

⇒ n3 + 11n = n(n – 1)(n + 1) + 12n ⋮ 6.

Bình luận (0)
AN
7 tháng 3 2021 lúc 14:49

n^3+11n chia hết cho 6

n^3+11n=n^3-n+12n

=(n-1)n(n+1)+12n

vậy n^3+11n luôn chia hết cho 6, với mọi n

Bình luận (0)
 Khách vãng lai đã xóa
DT
Xem chi tiết
QH
31 tháng 1 2020 lúc 20:05

​N^3+11n=n^3-n+12n

=n(n^2-1)+12n

=(n-1)n (n+1) +12n

Vì n là số tự nhiên nên => (n-1)n (n+1) là tích 3 số nguyên liên tiếp => chia hết cho 6

12 chia hết cho 6 nên 12n chia hết cho 6

=> (n-1)n (n+1)+12n chia hết cho 6

=> n^+11n chia hết cho 6

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
HT
8 tháng 4 2016 lúc 20:35

ta có n^3+11n

= n^3-n+12n 

= n(n^2-1)+12n

= n(n-1)(n+1)+12n

Do n(n-1)(n+1) là tích 3 số nguyên liên tiếp nên chia hết cho 6 và 12n chia hết cho 6 nên 

n^3+11n chia hết cho 6 với n là số nguyên

CHƯA HIỂU CHỖ NÀO HỎI MK NHA BẠN 

Bình luận (0)
NC
Xem chi tiết
LP
17 tháng 9 2018 lúc 21:11

Ta có :

n\(^3\) + 11n

= n\(^3\) - n + 12n

= n ( n\(^2\) - 1 ) + 12n

= n ( n - 1 )( n + 1 ) + 12n

= ( n - 1 )n( n + 1 ) + 12n

Vì ( n - 1 )n( n + 1 ) là 3 số nguyên liên tiếp.

⇒ ( n - 1 )n( n + 3 ) có tích của 3 số nguyên liên tiếp nên phải chia hết cho 6.

Lại có : 12 sẽ chia hết cho 6

⇒ 12n chia hết cho 6

Vậy ( n - 1 )n( n + 1 ) + 12n sẽ chia hết cho 6

Vậy n\(^3\) + 11n chia hết cho 6

Bình luận (2)
YE
Xem chi tiết
VG
11 tháng 8 2017 lúc 15:03

ta có: A= \(n^3-6n^2+11n-6\)

<=>A=\(n^3-n^2-5n^2+5n+6n-6\)

<=>A=\(n^2\left(n-1\right)-5n\left(n-1\right)+6\left(n-1\right)\)

<=>A=\(\left(n^2-5n+6\right)\left(n-1\right)\)

<=>A=\(\left(n-1\right)\left(n-2\right)\left(n-3\right)\)

Mặt khác: (n-1) ; (n-2) ; (n-3) là 3 số liên tiếp nên \(\left(n-1\right)\left(n-2\right)\left(n-3\right)\) là tích của 3 số liên tiếp => có 1 số chia hết cho 2 và 1 số chia hết cho 3. mà 2 và 3 nguyên tố cùng nhau nên A chia hét cho (2.3)=6

Bình luận (0)
H24
Xem chi tiết
SG
20 tháng 8 2016 lúc 15:03

Ta có:

n3 + 11n

= n3 - n + 12n

= n.(n2 - 1) + 12n

= n.(n - 1).(n + 1) + 12n

= (n - 1).n.(n + 1) + 12n

Vì (n - 1).n.(n + 1) là tích 3 số tự nhiên liên tiếp => tích này chia hết cho 2 và 3

Mà (2;3)=1 => (n - 1).n.(n + 1) chia hết cho 6; 12n chia hết cho 6

=> n3 + 11n chia hết cho 6 ( đpcm)

Bình luận (0)
H24
Xem chi tiết
ND
1 tháng 1 2016 lúc 20:32

có biết đâu mà giúp, mong bạn thông cảm cho. Nhớ tick cho mình với

Bình luận (0)
SY
Xem chi tiết
TH
6 tháng 1 2015 lúc 16:35

Ta có: n3+11n

= n3-n+12n

= n(n2-1)+12n

=(n-1)(n+1)n+12n

Vì n-1, n, n+1 là tích 3 số nguyên liên tiếp nên n(n-1)(n+1) chia hết cho 6.

Mà 12n chia hết cho 6

=>n3+11n chia hết cho 6

Bình luận (0)
SK
3 tháng 5 2016 lúc 12:57

ta co:n^3+11n

=n^3-n+12n

=n(n^2-1)+12n

=(n-1)(n+1)n+12n

Bình luận (0)
EC
4 tháng 5 2016 lúc 16:12

=n^3-n+12n

=n(n^2-1)+12n

=(n-1)N+1)

Bình luận (0)
BH
Xem chi tiết
TV
20 tháng 9 2018 lúc 12:46

n3 + 11n = n3 - n + 12n = n(n2 - 1) + 12n

= n(n-1)(n+1) + 12n

Vì n; n-1; n+1 là 3 số tự nhiên liên tiếp ( do n là STN )

=> n(n-1)(n+1) chia hết cho 6 (1)

Vì 12 chia hết cho 6 nên 12n chia hết cho 6 (2)

Từ (1) và (2) => n(n-1)(n+1) + 12n chia hết cho 6

=> n3 + 11n chia hết cho 6

Bình luận (0)