cho hình bình hành abcd(a khác 120 độ). vẽ tam giác đều abe;adf nằm ngoài hình bình hành
a) CM:tam giác efc đều
b) gọi m,i,k thứ tự là trung điểm của bd,af,ae.tính imk
Cho hình bình hành abcd có a khác 120 độ,vẽ các tam giác đều ABE và ADF nằm ngoài hình bình hành đó.1,CM tam giác EFC là tam giác đều.2,Gọi M,I,K theo thứ tự là trung điểm BD,AF,AE.Tính góc IMK
Cho hình bình hành abcd có a khác 120 độ,vẽ các tam giác đều ABE và ADF nằm ngoài hình bình hành đó.1,CM tam giác EFC là tam giác đều.2,Gọi M,I,K theo thứ tự là trung điểm BD,AF,AE.Tính góc IMK
Cho hình bình hành abcd có a khác 120 độ,vẽ các tam giác đều ABE và ADF nằm ngoài hình bình hành đó.1,CM tam giác EFC là tam giác đều.2,Gọi M,I,K theo thứ tự là trung điểm BD,AF,AE.Tính góc IMK
Cho hình bình hành ABCD ( góc A khác 120 độ ). vẽ tam giác đều ABE và ADF nằm ngoài hình bình hành đó.
a) CMR : tam giác EFC là tam giác đều
b) Gọi M, I, K theo thứ tự là trung điểm của BD, AF, AE. Tính góc IMK
Mk chỉ làm phần a thôi nhé bạn !
Bài giải:
Xét tam giác EBC và tam giác FAE, vì ABCD là hình bình hành và hai tam giác ABE, ADF đều nên ta có:
* EB = EA
* BC = AD = AF
* ^EBC = 60o + ^ABC = 60o + (180o - ^BAD) = 360o - ^BAD - (^FAD + ^BAE) = ^EAF
Do đó 2 tam giác trên bằng nhau. Từ đó suy ra EC = EF (2 cạnh tương ứng).
Hoàn toàn tương tự với tam giác EBC và CDF, ta cũng suy ra được CF = FE.
Vậy EC = EF = CF hay tam giác EFC đều. (đpcm)
Cho hình bình hành abcd có a khác 120 độ,vẽ các tam giác đều ABE và ADF nằm ngoài hình bình hành đó.
1,CM tam giác EFC là tam giác đều.
2,Gọi M,I,K theo thứ tự là trung điểm BD,AF,AE.Tính góc IMK
Cho hình binh hành ABCD ( góc A khác 120 độ). Vẽ các tam giác đều ABE và ADF nằm ngoài hình bình hành đó
a/ CMR: tam giác EFC là tam giác đều
b/ gọi M,I,K theo thứ tự là trung điểm BD, AF, AE . Tính góc IMK
Vì chx ai TL nên bn có thể tham khảo tại google
#)Giải :
Xét \(\Delta EBC\) và \(\Delta FAE\), vì ABCD là hình bình hành và hai \(\Delta ABE;\Delta ADF\) đều nên ta có:
EB = EA
BC = AD = AF
EBC = 60o + \(\widehat{ABC}\) = 60o + (180o - \(\widehat{BAD}\)) = 360o - \(\widehat{BAD}\) - (\(\widehat{FAD}\)+ \(\widehat{BAE}\)) = \(\widehat{EAF}\)
=> \(\Delta EBC=\Delta FAE\Rightarrow EC=EF\)( cặp cạnh tương ứng bằng nhau )
Tương tự với \(\Delta EBC;\Delta CDF\), ta cũng suy ra được CF = FE.
=> EC = EF = CF hay tam giác EFC đều. (đpcm)
Cho hình bình hành abcd có a khác 120 độ,vẽ các tam giác đều ABE và ADF nằm ngoài hình bình hành đó.1,CM tam giác EFC là tam giác đều.2,Gọi M,I,K theo thứ tự là trung điểm BD,AF,AE.Tính góc IMK
AI BIẾT LÀM BÀI NÀY KO GIÚP VỚI MÌNH CẦN GẤP
a, Vì ABCD là hình bình hành nên AD = BC
mà AD = AF ( vì tam giác ADF đều )
=> BC = AF
Xét tam giác BCE và tam giác AFE có :
BC = AF ( theo chứng minh trên )
BE = AE ( vì tam giác ABE đều )
góc EBC = 60độ + góc ABC = 60độ + ( 180độ - gócBAD ) = 360độ - góc BAD - ( góc FAD + góc BAE ) = EAF
Do đó : tam giác BCE = tam giác AFE ( c.g.c )
=> CE = FE ( hai cạnh tương ứng ) ( 1 )
Tương tự ta xét tam giác AFE và tam giác DFC ( c.g.c )
=> FE = FC ( hai cạnh tương ứng ) ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : FE = CE = FD
=> tam giác EFC đều .
Mk mới học sơ sơ về hình bình hành , chỗ mk mới học đến bài hình thang cân nên mk chỉ lm đc đến đây thui nhé .
Học tốt
cho hình bình hành abcd có góc a = 130 độ . vẽ ở ngoài hình bình hành các tam giác đều ABE,ADF a) tính gócAEF b) cm rằng tam giác CEF là tam giác đều
Cho hình bình hành ABCD , A=130 độ vẽ ở ngoài hình bình hành tam giác đều ABE và ADF
a, Tính góc EAF
b, chứng minh tam giác CEF đều
Cho hình bình hành ABCD , A=130 độ vẽ ở ngoài hình bình hành tam giác đều ABE và ADF
a, Tính góc EAF
b, chứng minh tam giác CEF đều