Những câu hỏi liên quan
LL
Xem chi tiết
LL
Xem chi tiết
H24
13 tháng 7 2016 lúc 10:27

Ta có \(\left(x+y\right)^3\)=\(x^3+3x^2y+3xy^2+y^3\)

Mà \(x\left(x-3y\right)^2+y\left(y-3x\right)^2\)=\(x\left(x^2-6xy+9y^2\right)+y\left(y^2-6xy+9x^2\right)\)

\(x^3-6x^2y+9xy^2+y^3-6xy^2+9x^2y\)\(=x^3+\left(-6x^2y+9x^2y\right)+\left(-6xy^2+9xy^2\right)+y^3\)

=\(x^3+3x^2y+3xy^2+y^3\)=\(\left(x+y\right)^3\)

=>đpcm

Bình luận (0)
LL
13 tháng 7 2016 lúc 10:35

dạ e k gõ lm ak

Bình luận (0)
BE
Xem chi tiết
NA
Xem chi tiết
KT
Xem chi tiết
NT
27 tháng 10 2021 lúc 19:25

b: \(C=xy\left(x^3+2\right)-y\left(xy^3+2x\right)\)

\(=x^4y+2xy-xy^4-2xy\)

\(=xy\left(x^3-y^3\right)\)

\(=xy\left(x-y\right)\left(x^2+xy+y^2\right)⋮x^2+xy+y^2\)

Bình luận (0)
NN
Xem chi tiết
H24
19 tháng 8 2023 lúc 20:13

Để chứng minh bất đẳng thức trên, ta sẽ sử dụng phương pháp giả sử ngược (Proof by Contradiction). Giả sử bất đẳng thức trên không đúng, tức là: (5x^3 - y^3)/(3x^2 + xy + 5y^3) + (5y^3 - z^3)/(3y^2 + yz + 5z^3) + (5z^3 - x^3)/(3z^2 + xz + 5x^3) > x + y + z Ta có thể viết lại bất đẳng thức trên thành: (5x^3 - y ^3)/(3x^2 + xy + 5y^3) - x + (5y^3 - z^3)/(3y^2 + yz + 5z^3) - y + (5z^3 - x^3 )/(3z^2 + xz + 5x^3) - z > 0 Tiếp theo, ta nhận thấy rằng với mọi a, b > 0, ta luôn có: (a^3 - b^3)/(a^2 + ab + b^2) - a > 0 and (a^3 - b^3)/(a^2 + ab + b^2) - b > 0. Vì vậy, áp dụng bất đẳng thức trên từng phần thức trong tổng, ta có: (5x^3 - y^3)/(3x^2 + xy + 5y^3) - x > 0 (5y ^3 - z^3)/(3y^2 + yz + 5z ^3) - y > 0 (5z^3 - x^3)/(3z^2 + xz + 5x^3) - z > 0 Khi đặt a = x^3, b = y^3, c = z^3, ta có: (5a - b)/(3a^2 + ab + 5b) - a^(1/3) > 0 (5b - c)/(3b^2 + bc + 5c) - b^(1/3) > 0 (5c - a)/(3c^2 + ac + 5a) - c^(1/3) > 0 Nói cách khác, ta có các bất đẳng thức sau: (5a - b)/(3a^2 + ab + 5b) > a^(1/3) (5b - c)/(3b^2 + bc + 5c) > b^(1/3) ( 5c - a)/(3c^2 + ac + 5a) > c^( 1/3) Áp dụng bất đẳng thức AM-GM, ta có: 3a^2 + ab + 5b ≥ 3∛(15a^2b) 3b^2 + bc + 5c ≥ 3∛(15b^2c) 3c^2 + ac + 5a ≥ 3∛(15c^2a) Khi đặt A = 3a^2 + ab + 5b, B = 3b^2 + bc + 5c, C = 3c^2 + ac + 5a, ta có: A > a ^ (1/3) B > b^(1/3) C > c^(1/3) Từ đó, ta có: (A + B + C) > (a^(1/3) + b^(1/3) + c^(1/3)) Nhưng A, B, C lần lượt tương ứng với các số mẫu trong bất đẳng thức ban đầu, ta thu được: (5a - b)/(3a^2 + ab + 5b) + (5b - c)/(3b^2 + bc + 5c) + (5c - a)/(3c^ 2 + ac + 5a) > (a^(1/3) + b^(1/3) + c^(1/3)) Tuy nhiên, điều này trái với giả định ban đầu.

Bình luận (0)
TT
Xem chi tiết
TN
17 tháng 6 2017 lúc 20:03

\(M=3x\left(x-5y\right)+\left(y-5x\right)\left(-3y\right)-3\left(x^2-y^2\right)=3x^2-15xy-3y^2+15xy-3x^2+3y^2=0\)Vậy biểu thức trên không phụ thuộc vào biến x ,y

Bình luận (2)
PA
17 tháng 6 2017 lúc 20:13

M= 3x2 - 15xy - 3y2 + 15xy - 3x2 + 3y2

Vậy biểu thức M có giá trị không phụ thuộc vào biến x và biến y.

Bình luận (0)
PL
Xem chi tiết
NL
22 tháng 8 2020 lúc 17:06

Bài 1:

a) \(\left(x+y\right)^2-y^2=x^2+2xy+y^2-y^2=x^2+2xy=x\left(x+2y\right)\)

b) Sửa đề: \(\left(x^2+y^2\right)^2-\left(2xy\right)^2=\left(x^2-2xy+y^2\right)\left(x^2+2xy+y^2\right)\)

\(=\left(x-y\right)^2\left(x+y\right)^2\)

c) \(x\left(x-3y\right)^2+y\left(y-3x\right)^2=x\left(x^2-6xy+9y^2\right)+y\left(y^2-6xy+9x^2\right)\)

\(=x^3-6x^2y+9xy^2+y^3-6xy^2+9x^2y\)

\(=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
22 tháng 8 2020 lúc 17:10

Bài 2:

a) \(\left(a+b\right)^3+\left(a-b\right)^3=\left(a+b+a-b\right)\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)

\(=2a\left(a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2\right)\)

\(=2a\left(a^2+3b^2\right)\)

b) \(\left(a+b\right)^3-\left(a-b\right)^3=\left(a+b-a+b\right)\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)

\(=2b\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)\)

\(=2b\left(b^2+3a^2\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
22 tháng 8 2020 lúc 19:33

a, \(\left(x+y\right)^2-y^2=x\left(x+2y\right)\Leftrightarrow x^2+2xy+y^2-y^2=x^2+2xy\)

\(\Leftrightarrow x^2+2xy=x^2+2xy\left(đpcm\right)\)

b, \(\left(x^2+y^2\right)-\left(2xy\right)^2=\left(x+y\right)^2\left(x-y\right)^2\)

\(\Leftrightarrow x^2+y^2-4x^2y^2=\left(x^2+2xy+y^2\right)\left(x^2-2xy+y^2\right)\)

\(\Leftrightarrow x^2+y^2-4x^2y^2=x^4-2x^2y^2+y^4\)đề sai ? 

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết