Chứng minh
(x+y)3=x(x-3y)2+y(y-3x)2
Chứng minh đẳng thức: (x+y)3 = x(x-3y)2 + y(y-3x)2
(x+y)3 = x (x-3y)2 + y (y-3x)2 chứng minh đẳng thức
Ta có \(\left(x+y\right)^3\)=\(x^3+3x^2y+3xy^2+y^3\)
Mà \(x\left(x-3y\right)^2+y\left(y-3x\right)^2\)=\(x\left(x^2-6xy+9y^2\right)+y\left(y^2-6xy+9x^2\right)\)
\(x^3-6x^2y+9xy^2+y^3-6xy^2+9x^2y\)\(=x^3+\left(-6x^2y+9x^2y\right)+\left(-6xy^2+9xy^2\right)+y^3\)
=\(x^3+3x^2y+3xy^2+y^3\)=\(\left(x+y\right)^3\)
=>đpcm
cho các số nguyên x,y thỏa mãn điều kiện x^2+y^2+9= 2(xy+3x+3y) chứng minh x,y chia hết cho 3 và x/3,y/3 đều là các số chính phương
cho x,y là 2 số thực dương. chứng minh rằng: \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}-\dfrac{3x}{y}-\dfrac{3y}{x}+4\ge0\)
Bài 1: Chứng minh mọi số nguyên x,y thì:
`a)B=x^3y^2-3x^2y+2y` chia hết `(xy -1)`
`b)C=xy(x^3 +2)-y(xy^3+2x)` chia hết `(x^2 + xy + y^2)`
b: \(C=xy\left(x^3+2\right)-y\left(xy^3+2x\right)\)
\(=x^4y+2xy-xy^4-2xy\)
\(=xy\left(x^3-y^3\right)\)
\(=xy\left(x-y\right)\left(x^2+xy+y^2\right)⋮x^2+xy+y^2\)
Chứng minh rằng: \(\dfrac{5x^3-y^3}{3x^2+xy}\)+\(\dfrac{5y^3-z^3}{3y^2+yz}\)+\(\dfrac{5z^3-x^3}{3z^2+xz}\)<=x+y+z, với z,y,z>0
Để chứng minh bất đẳng thức trên, ta sẽ sử dụng phương pháp giả sử ngược (Proof by Contradiction). Giả sử bất đẳng thức trên không đúng, tức là: (5x^3 - y^3)/(3x^2 + xy + 5y^3) + (5y^3 - z^3)/(3y^2 + yz + 5z^3) + (5z^3 - x^3)/(3z^2 + xz + 5x^3) > x + y + z Ta có thể viết lại bất đẳng thức trên thành: (5x^3 - y ^3)/(3x^2 + xy + 5y^3) - x + (5y^3 - z^3)/(3y^2 + yz + 5z^3) - y + (5z^3 - x^3 )/(3z^2 + xz + 5x^3) - z > 0 Tiếp theo, ta nhận thấy rằng với mọi a, b > 0, ta luôn có: (a^3 - b^3)/(a^2 + ab + b^2) - a > 0 and (a^3 - b^3)/(a^2 + ab + b^2) - b > 0. Vì vậy, áp dụng bất đẳng thức trên từng phần thức trong tổng, ta có: (5x^3 - y^3)/(3x^2 + xy + 5y^3) - x > 0 (5y ^3 - z^3)/(3y^2 + yz + 5z ^3) - y > 0 (5z^3 - x^3)/(3z^2 + xz + 5x^3) - z > 0 Khi đặt a = x^3, b = y^3, c = z^3, ta có: (5a - b)/(3a^2 + ab + 5b) - a^(1/3) > 0 (5b - c)/(3b^2 + bc + 5c) - b^(1/3) > 0 (5c - a)/(3c^2 + ac + 5a) - c^(1/3) > 0 Nói cách khác, ta có các bất đẳng thức sau: (5a - b)/(3a^2 + ab + 5b) > a^(1/3) (5b - c)/(3b^2 + bc + 5c) > b^(1/3) ( 5c - a)/(3c^2 + ac + 5a) > c^( 1/3) Áp dụng bất đẳng thức AM-GM, ta có: 3a^2 + ab + 5b ≥ 3∛(15a^2b) 3b^2 + bc + 5c ≥ 3∛(15b^2c) 3c^2 + ac + 5a ≥ 3∛(15c^2a) Khi đặt A = 3a^2 + ab + 5b, B = 3b^2 + bc + 5c, C = 3c^2 + ac + 5a, ta có: A > a ^ (1/3) B > b^(1/3) C > c^(1/3) Từ đó, ta có: (A + B + C) > (a^(1/3) + b^(1/3) + c^(1/3)) Nhưng A, B, C lần lượt tương ứng với các số mẫu trong bất đẳng thức ban đầu, ta thu được: (5a - b)/(3a^2 + ab + 5b) + (5b - c)/(3b^2 + bc + 5c) + (5c - a)/(3c^ 2 + ac + 5a) > (a^(1/3) + b^(1/3) + c^(1/3)) Tuy nhiên, điều này trái với giả định ban đầu.
Chứng minh rằng:biểu thức không phụ thuộc vào biến x và y!!
M=3x.(x-5y) + (y-5x).(-3y) -3.(x^2-y^2)
\(M=3x\left(x-5y\right)+\left(y-5x\right)\left(-3y\right)-3\left(x^2-y^2\right)=3x^2-15xy-3y^2+15xy-3x^2+3y^2=0\)Vậy biểu thức trên không phụ thuộc vào biến x ,y
M= 3x2 - 15xy - 3y2 + 15xy - 3x2 + 3y2
Vậy biểu thức M có giá trị không phụ thuộc vào biến x và biến y.
1. Chứng minh các đẳng thức :
a) (x + y)^2 - y^2 = x(x + 2y)
b) (x^2 + y^2) - (2xy)^2 = (x + y)^2 . (x - y)^2
c) (x + y)^3 = x(x - 3y)^2 + y(y - 3x)^2
2.Chứng minh rằng :
a) (a + b)^3 + (a - b)^3 = 2a(a^2 + 3b^2)
b) (a + b)^3 - (a - b)^3 = 2b(b^2 + 3a^2)
GIÚP MK VS Ạ!!!!!!! MK VIẾT HƠI KHÓ ĐỌC TÍ
Bài 1:
a) \(\left(x+y\right)^2-y^2=x^2+2xy+y^2-y^2=x^2+2xy=x\left(x+2y\right)\)
b) Sửa đề: \(\left(x^2+y^2\right)^2-\left(2xy\right)^2=\left(x^2-2xy+y^2\right)\left(x^2+2xy+y^2\right)\)
\(=\left(x-y\right)^2\left(x+y\right)^2\)
c) \(x\left(x-3y\right)^2+y\left(y-3x\right)^2=x\left(x^2-6xy+9y^2\right)+y\left(y^2-6xy+9x^2\right)\)
\(=x^3-6x^2y+9xy^2+y^3-6xy^2+9x^2y\)
\(=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3\)
Bài 2:
a) \(\left(a+b\right)^3+\left(a-b\right)^3=\left(a+b+a-b\right)\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(=2a\left(a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2\right)\)
\(=2a\left(a^2+3b^2\right)\)
b) \(\left(a+b\right)^3-\left(a-b\right)^3=\left(a+b-a+b\right)\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(=2b\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)\)
\(=2b\left(b^2+3a^2\right)\)
a, \(\left(x+y\right)^2-y^2=x\left(x+2y\right)\Leftrightarrow x^2+2xy+y^2-y^2=x^2+2xy\)
\(\Leftrightarrow x^2+2xy=x^2+2xy\left(đpcm\right)\)
b, \(\left(x^2+y^2\right)-\left(2xy\right)^2=\left(x+y\right)^2\left(x-y\right)^2\)
\(\Leftrightarrow x^2+y^2-4x^2y^2=\left(x^2+2xy+y^2\right)\left(x^2-2xy+y^2\right)\)
\(\Leftrightarrow x^2+y^2-4x^2y^2=x^4-2x^2y^2+y^4\)đề sai ?
1) Chứng minh bt sau ko phụ thuộc vào biến
a) ( x-1)^ 3 - ( x+4) ( x^2- 4x+16) + 3x ( x-1)
b) (2x+3y) ( 4x^2- 6xy + 9y^2) - ( 2x - 3y ) ( 4x^2+ 6xy + 9y^2) - 27 ( 2y^3- 1 )
c) y( x^2- y^2) ( x^2+ y^2) - y( x^4- y^4)
d) ( x-1)^3- ( x-1) ( x^2+ x + 1 ) - 3 ( 1-x).x