Những câu hỏi liên quan
MT
Xem chi tiết
KM
Xem chi tiết
PH
23 tháng 8 2017 lúc 15:15

Kiểm tra lại đề xem thừa số cuối có đúng quy luật của dãy không.

Bình luận (0)
TT
Xem chi tiết
NN
Xem chi tiết
NM
28 tháng 1 2019 lúc 10:18

\(\Rightarrow\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right).y=\frac{49}{100}\)

\(\Leftrightarrow\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{100-98}{98.99.100}\right).y=\frac{49}{100}\)

\(\Leftrightarrow\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right).y=\frac{49}{100}\)

\(\Leftrightarrow\left(\frac{1}{1.2}-\frac{1}{99.100}\right).y=\frac{49}{100}\Leftrightarrow\left(\frac{99.50-1}{99.100}\right).y=\frac{49}{100}\)

\(\Leftrightarrow\left(\frac{99.50-1}{99}\right).y=49\Leftrightarrow\left(99.50-1\right).y=99.49\Rightarrow y=\frac{99.49}{99.50-1}\)

Bình luận (0)
NT
11 tháng 5 2020 lúc 16:17

ảnh đại diện đẹp thế lấy ở đâu

Bình luận (0)
 Khách vãng lai đã xóa
DH
Xem chi tiết
ML
27 tháng 6 2015 lúc 19:33

\(\frac{2}{n\left(n+1\right)\left(n+2\right)}=\frac{n+2-n}{n\left(n+1\right)\left(n+2\right)}=\frac{n+2}{n\left(n+1\right)\left(n+2\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{n\left(n+2\right)}\)

\(\Rightarrow\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

\(=\frac{1}{1.2}-\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{1.2.3}+...+\frac{1}{98.99.100}=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(\Rightarrow k=2\)

Bình luận (0)
DT
Xem chi tiết
Xem chi tiết
LP
21 tháng 4 2023 lúc 21:03

Biến đổi thừa số tổng quát: \(1+\dfrac{1}{\left(k-1\right)\left(k+1\right)}\) \(=\dfrac{\left(k-1\right)\left(k+1\right)+1}{\left(k-1\right)\left(k+1\right)}\) \(=\dfrac{k^2}{\left(k-1\right)\left(k+1\right)}\).

Do đó \(1+\dfrac{1}{1.3}=\dfrac{2^2}{1.3}\)\(1+\dfrac{1}{2.4}=\dfrac{3^2}{2.4}\)\(1+\dfrac{1}{3.5}=\dfrac{4^2}{3.5}\),..., \(1+\dfrac{1}{2018.2020}=\dfrac{2019^2}{2018.2020}\)\(1+\dfrac{1}{2019.2021}=\dfrac{2020^2}{2019.2021}\). Từ đó suy ra \(\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)...\left(1+\dfrac{1}{2019.2021}\right)\) 

\(=\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.\dfrac{5^2}{4.6}.\dfrac{6^2}{5.7}...\dfrac{2019^2}{2018.2020}.\dfrac{2020^2}{2019.2021}\)

\(=\dfrac{2.2020}{2021}=\dfrac{4040}{2021}\)

Bình luận (0)
H24
Xem chi tiết
ZB
13 tháng 4 2017 lúc 13:50

Ta có:

\(9911=11\cdot17\cdot53\)

Để \(A=1.3.5...2015+2.4.6....2016⋮9911\)thì:\(\hept{\begin{cases}1.3.5...2015⋮9911\\2.4.6...2016⋮9911\end{cases}}\)

Mà: \(1.3.5...2015=1.3.5...11.13.15.17...53...2015⋮11.17.53=9911\)

và \(2\cdot4\cdot...\cdot2016=2\cdot4\cdot...\cdot22\cdot...\cdot34\cdot...\cdot106\cdot...\cdot2016⋮11\cdot17\cdot54=9911\)

=> đpcm

Bình luận (0)
BH
Xem chi tiết