Nhân đơn thức:
a)(-1/3m2).(-24n).(4mn)
b)(5a).(a2b2).(-2b).(-3a)
Nhân đơn thức
a)(-1/3m2).(-24n).(4mn)
b)(5a).(a2b2).(-2b).(-3a)
Nhân đơn thức :
a) (-\(\dfrac{1}{3}\)m2) × (-24n) × (4mn)
b) (5a)(a2b2) × (-2b)(-3a)
Các cậu giúp mình
Nhân đơn thức :
a) \(\left(-\dfrac{1}{3}m^2\right).\left(-24n\right).4mn\)
\(=-\dfrac{1}{3}.\left(-24\right).4.m^2.n.mn\)
\(=32m^3n^2\)
b) \(5a.a^2b^2.\left(-2b\right)\left(-3a\right)\)
\(=5.\left(-2\right).\left(-3\right).a.a^2b^2.b.a\)
\(=30a^4b^3\)
Cho đơn thức \(2a^2b;\dfrac{1}{3}ab^2;-3a^2b;5x^2y.\)Tìm đơn thức đồng dạng với \(-5a^2b\)
thu gọn các đơn thức sau
a)ab.4/3a^2b^4.7abc
b)a^3b^3.a^2b^2c
c)2/3a^3b.(-1/2ab).a^2b
d)-2 1/3a^3c^21/7ac^2 6abc
e)(-1,5ab^2)1/4bca^2b
a: \(=ab\cdot\dfrac{4}{3}a^2b^4\cdot7abc=\dfrac{28}{3}a^4b^6c\)
b: \(a^3b^3\cdot a^2b^2c=a^5b^5c\)
c: \(=\dfrac{2}{3}a^3b\cdot\dfrac{-1}{2}ab\cdot a^2b=\dfrac{-1}{3}a^6b^3\)
d: \(=-\dfrac{7}{3}a^3c^2\cdot\dfrac{1}{7}ac^2\cdot6abc=-2a^5bc^5\)
e: \(=\dfrac{-3}{2}\cdot\dfrac{1}{4}\cdot ab^2\cdot bca^2\cdot b=\dfrac{-3}{8}a^3b^4c\)
Đơn giản biểu thức:
a,-(a + b - c) - (a - b + c) + 2a + 2c
b,- (3a +2b+4c) - 3(3a + 2b - 5c) + 10a - 8b - c
phân tích thành nhân tử
`25a^2 -(a-b)^2`
`4a^2 -(a+b)^2`
`49a^2 -(2a-b)^2`
`36a^2-(3a-2b)^2`
`81a^2 -(5a-3b)^2`
a: =(5a-a+b)(5a+a-b)
=(4a+b)(5a-b)
b: =(2a-a-b)(2a+a+b)
=(a-b)(3a+b)
c: =(7a-2a+b)(7a+2a-b)
=(5a+b)(9a-b)
d: =(6a-3a+2b)(6a+3a-2b)
=(3a+2b)(9a-2b)
e: =(9a-5a+3b)(9a+5a-3b)
=(4a+3b)(14a-3b)
Lời giải:
$25a^2-(a-b)^2=(5a)^2-(a-b)^2=[5a-(a-b)][5a+(a-b)]=(4a+b)(6a-b)$
$4a^2-(a+b)^2=(2a)^2-(a+b)^2=[2a-(a+b)][2a+(a+b)]=(a-b)(3a+b)$
$49a^2-(2a-b)^2=(7a)^2-(2a-b)^2=[7a-(2a-b)][7a+(2a-b)]=(5a+b)(9a-b)$
$36a^2-(3a-2b)^2=(6a)^2-(3a-2b)^2=[6a-(3a-2b)][6a+(3a-2b)]$
$=(3a+2b)(9a-2b)$
$81a^2-(5a-3b)^2=(9a)^2-(5a-3b)^2=[9a-(5a-3b)][9a+(5a-3b)]$
$=(4a+3b)(14a-3b)$
: Viết các biểu thức sau dưới dạng của đa thức:
a) (2a-b) (b+4a) + 2a (b-3a)
b) (3a-2b) (2a-3b) - ba (a-b)
c) 5b (2x-b) - (8b-x) (2x-b)
d) 2x (a+15x) + (x-6a) (5a+2x)
a) (2a - b)(b + 4a) + 2a(b - 3a)
= 2a(b + 4a) - b(b + 4a) + 2ab - 6a^2
= 2ab + 8a^2 - b^2 - 4ab + 2ab - 6a^2
= (8a^2 - 6a^2) + (2ab + 2ab - 4ab) - b^2
= 2a^2 - b^2
b) .(3a - 2b)(2a - 3b) - 6a(a - b)
= 3a(2a - 3b) - 2b(2a - 3b) - (6a^2 - 6ab)
= 6a^2 - 9ab - (4ab - 6b^2) - (6a^2 - 6ab)
= 6a^2 - 9ab - 4ab + 6b^2 - 6a^2 + 6ab
= 6b^2 + (6a^2 - 6a^2) + (6ab - 4ab - 9ab)
= 6b^2 - 7ab
c. 5b(2x - b) - (8b - x)(2x - b)
= 10bx - 5b^2 - 8b(2x - b) + x(2x - b)
= 10bx - 5b^2 - 16bx + 8b^2 + 2x^2 - bx
= (10bx - 16bx - bx) + 2x^2 + (8b^2 - 5b^2)
= -7bx + 2x^2 + 3b^2
d. 2x(a + 15x) + (x - 6a)(5a + 2x)
= 2ax + 30x^2 + x(5a + 2x) - 6a(5a + 2x)
= 2ax + 30x^2 + 5ax + 2x^2 - 30a^2 - 12ax
= (30x^2 + 2x^2) + (2ax + 5ax - 12ax) - 30a^2
= 32x^2 - 5ax - 30a^2
Chúc bạn hok tốt !!!
1) (a+2b+1)2
=a2+2a(2b+1)+(2b+1)2
=a2+4ab+2a+(2b)2+2.2b.1+12
=a2+4ab+2a+4b2+4b+1
2) (2a-b+3)2
=(2a)2 -2.2a(b-3)+(b-3)2
=4a2-4a(b-3)+b2-2b.3+32
=4a2-4ab+12a+b2 -6b+9
3) (2a-3b+1)2
=(2a)2-2.2a(3b-1)+(3b-1)2
=4a2-4a(3b-1)+(3b)2-2.3b.1+12
=4a2-4ab+4a+9b2-6b+1
Viết các biểu thức sau dưới dạng đa thức:
a) (2a-b)(b+4a)+2a(b-3a)
b) (3a-2b)(2a-3b)-6a(a-b)
c) 5b(2x-b)-(8b-x)(2x-b)
d) 2x(a+15x)+(x-6a)(5a+2x)
Từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) hãy suy ra tỉ lệ thức \(\frac{3a-2b}{5a+2b}=\frac{3c-2d}{5c+2d}\)
Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{5a}{5c}=\frac{2b}{2d}=\frac{3a-2b}{3c-2d}=\frac{5a+2b}{5c+2d}\)
\(\Rightarrow\frac{3a-2b}{5a+2b}=\frac{3c-2d}{2c+2d}\) ( đpcm )