Tìm x,y biết:
3/5x=2/3y và x^2=38
Tìm x,y biết : 3/5x = 2/3y và x^2 - y^2 = 38
Tìm x, y, biết:
3/5x=2/3y và x^2-y^2=38.
x^2 - y^2 = 38 (2)
(1) => y = (9/10) x.Thay vao (1) ---> x^2 - [(9/10)x]^2 = 38 <=> x^2 - (81/100)x^2 = 38
<=> (19/100)x^2 = 38 <=> x^2 = (38/19).100 = 200
<=>
{x = 10 can 2 ; y = (9/10)x = 9 can 2
{x = -10 can 2 ; y = (9/10)x = - 9 can 2.
Tìm x,y:
3/5x bằng 2/3y và x mu 2 - y mu 2 bằng 38
mk mới học lớp 7 thui
chưa học đến mấy cái này
hông cảm nha
k mkmk k lại
cmar ơn các bạn nhìu
ai k rùi thì kết abnj nhé
bài này mình
biết làm
vì mình cũng đã
học qua toán lớp 7
rùi nhưng mà sợ sai lắm
sai rùi các bn
lại nói cho
help! tìm x,y,z:
a)3/5x=2/3y và x^2-y^2=38
b)1-2y/10=2+3y/15=3+8y/5x
c)x/3+y/4+z/5 và x.y.z=120
tìm x,y biết : 3/5x = 2/3y và x^2-y^2=38
Không dùng căn, dùng áp dụng tính chất của dãy tỉ số bằng nhau nhé
Ta có: \(x^2-y^2=x^2-xy+xy-y^2=x\left(x-y\right)+y\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y\right)=38\)(1)
Mặt khác: \(\frac{3}{5x}=\frac{2}{3y}\Leftrightarrow10x=9y\Leftrightarrow x=\frac{9y}{10}\). THAY VÀO (1) TA ĐƯỢC:
(1) \(\Leftrightarrow\left(\frac{9y}{10}-y\right)\left(\frac{9y}{10}+y\right)=38\)
\(\Leftrightarrow\frac{-y}{10}.\frac{19y}{10}=38\)
\(\Leftrightarrow\frac{-19y^2}{100}=38\Leftrightarrow y^2=\frac{38.100}{-19}=-200\)(VÔ LÍ)
Vậy không có x,y đâu nha
\(\frac{3}{5}x=\frac{5}{4}y\)\(\hept{\begin{cases}\frac{3x}{5}=\frac{2y}{3}\\x^2-y^2=38\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{6x}{10}=\frac{6y}{9}=\frac{6x-6y}{10-9}=6\left(x-y\right)\\\left(x-y\right)\left(x+y\right)=38\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{10}=x-y\\\left(x-y\right)\left(x+y\right)=38\end{cases}}}\)
Từ phương trình (1) ta suy ra
\(y=\frac{9x}{10}\)Thay \(\left(x-y\right)=\frac{x}{10}\)và \(y=\frac{9x}{10}\) vào phương tfinhf (2) được \(\frac{x}{10}\left(x+\frac{9x}{10}\right)=38\Leftrightarrow\frac{19x^2}{100}=38\Leftrightarrow x^2=200\)\(\Leftrightarrow|x|=10\sqrt{2}\)\(x_1=10\sqrt{2}\)\(x_2=-10\sqrt{2}\)
Suy ra \(y_1=\frac{9x_1}{10}=\frac{9.10\sqrt{2}}{10}=9\sqrt{2}\)và \(y_2=\frac{9x_2}{10}=\frac{9.\left(-10\sqrt{2}\right)}{10}=-9\sqrt{2}\)
Hệ phương trình có hai nghiệm \(\left(10\sqrt{2};9\sqrt{2}\right)\) và \(\left(-10\sqrt{2};-9\sqrt{2}\right)\)
Ta có: \(\frac{3}{5}x=\frac{2}{3}y\)
\(\Rightarrow\frac{x}{\frac{2}{3}}=\frac{y}{\frac{3}{5}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{\frac{2}{3}}=\frac{y}{\frac{3}{5}}=\frac{x^2-y^2}{\frac{4}{9}-\frac{9}{25}}=\frac{38}{\frac{19}{225}}=450\)
\(\Rightarrow\hept{\begin{cases}x=\frac{2}{3}.450=300\\y=\frac{3}{5.450=270}\end{cases}}\)
Vậy \(x=300;y=270\)
Tìm x,y bt: 3/5x=2/3y và x2-y2=38
Ta có 3/5x=2/3y=> 3x/5.6=2y/5.6 hay x/10=y/9
Đặt giá trị chung của nó là k,ta có
x/10=y/9=k do đó x=10k; y=9k
Ta có x2-y2=(10k)2-(9k)2=19k2=38 ; k2=2; k=+\(\sqrt{2}\)
Suy ra x=+10.\(\sqrt{2}\); y=+9.\(\sqrt{2}\)
Có 2 đáp số (10\(\sqrt{2}\) ;9\(\sqrt{2}\)hoặc (-10\(\sqrt{2}\);-9\(\sqrt{2}\))
Tĩm,y biết: 3/5x=2/3y và x^2-y^2=38
Help me! Thanks~😉
#)Giải :
\(\frac{3x}{5}=\frac{2y}{3}\Leftrightarrow\frac{3x}{5}.\frac{1}{6}=\frac{2y}{3}.\frac{1}{6}\)
\(\Rightarrow\frac{3x}{30}=\frac{2y}{18}\Rightarrow\frac{x}{10}=\frac{y}{9}\Rightarrow\frac{x^2}{100}=\frac{y^2}{81}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x^2}{100}=\frac{y^2}{81}=\frac{x^2-y^2}{100-81}=\frac{38}{19}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x^2}{100}=2\\\frac{y^2}{81}=2\end{cases}\Rightarrow\hept{\begin{cases}x^2=200\\y^2=162\end{cases}\Rightarrow}\hept{\begin{cases}x=\pm\sqrt{200}\\y=\pm\sqrt{162}\end{cases}}}\)
Vậy ...
1/ x\(\dfrac{x}{3}=\dfrac{y}{8}=\dfrac{z}{5}\text{và}2x+3y-z=50\)
2/ x : y : z = 3 : 5 ; ( - 2 ) và 5x - y + 3z = -16
3/ 2x + 3y ; 7z = 5y và 3x - 7y + 5z = 30
4/ \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{4}=\dfrac{z}{5}\text{và}x-y-z=38\)
4: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{38}{-19}=-2\)
Do đó: x=-16; y=-24; z=-30
Tim x,ybiet 3/5x=2/3y va x^2-y^2=38