Những câu hỏi liên quan
PT
Xem chi tiết
DH
31 tháng 12 2022 lúc 21:54

a.  \(x^2-5x\ne0\)

=> ĐKXĐ: \(x\left(x-5\right)\ne0\) => \(\left\{{}\begin{matrix}x\ne0\\x\ne5\end{matrix}\right.\)

b. \(\dfrac{x^2-10x+25}{x^2-5x}\)

\(\dfrac{\left(x-5\right)^2}{x\left(x-5\right)}\)

\(\dfrac{x-5}{x}\)

 

Bình luận (0)
LG
Xem chi tiết
DA
Xem chi tiết
NT
19 tháng 12 2020 lúc 12:56

a) ĐKXĐ: \(x\notin\left\{0;-5\right\}\)

Ta có: \(B=\dfrac{x^2+2x}{2x+10}+\dfrac{x-5}{x}-\dfrac{5x-50}{2x^2+10x}\)

\(=\dfrac{x^2+2x}{2\left(x+5\right)}+\dfrac{x-5}{x}-\dfrac{5x-50}{2x\left(x+5\right)}\)

\(=\dfrac{x^3+2x^2}{2x\left(x+5\right)}+\dfrac{2\left(x+5\right)\left(x-5\right)}{2x\left(x+5\right)}-\dfrac{5x-50}{2x\left(x+5\right)}\)

\(=\dfrac{x^3+2x^2+2x^2-50-5x+50}{2x\left(x+5\right)}\)

\(=\dfrac{x^3+4x^2-5x}{2x\left(x+5\right)}\)

\(=\dfrac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}\)

\(=\dfrac{x^2+5x-x-5}{2\left(x+5\right)}\)

\(=\dfrac{x\left(x+5\right)-\left(x+5\right)}{2\left(x+5\right)}\)

\(=\dfrac{\left(x+5\right)\left(x-1\right)}{2\left(x+5\right)}\)

\(=\dfrac{x-1}{2}\)

b) Để B=0 thì \(\dfrac{x-1}{2}=0\)

\(\Leftrightarrow x-1=0\)

hay x=1(nhận)

Vậy: Để B=0 thì x=1

Để \(B=\dfrac{1}{4}\) thì \(\dfrac{x-1}{2}=\dfrac{1}{4}\)

\(\Leftrightarrow4\left(x-1\right)=2\)

\(\Leftrightarrow4x-4=2\)

\(\Leftrightarrow4x=6\)

hay \(x=\dfrac{3}{2}\)(nhận)

Vậy: Để \(B=\dfrac{1}{4}\) thì \(x=\dfrac{3}{2}\)

c) Thay x=3 vào biểu thức \(B=\dfrac{x-1}{2}\), ta được:

\(B=\dfrac{3-1}{2}=\dfrac{2}{2}=1\)

Vậy: Khi x=3 thì B=1

d) Để B<0 thì \(\dfrac{x-1}{2}< 0\)

\(\Leftrightarrow x-1< 0\)

\(\Leftrightarrow x< 1\)

Kết hợp ĐKXĐ, ta được: 

\(\left\{{}\begin{matrix}x< 1\\x\notin\left\{0;-5\right\}\end{matrix}\right.\)

Vậy: Để B<0 thì \(\left\{{}\begin{matrix}x< 1\\x\notin\left\{0;-5\right\}\end{matrix}\right.\)

Để B>0 thì \(\dfrac{x-1}{2}>0\)

\(\Leftrightarrow x-1>0\)

hay x>1

Kết hợp ĐKXĐ, ta được: x>1

Vậy: Để B>0 thì x>1

Bình luận (0)
HC
Xem chi tiết
NH
Xem chi tiết
LL
12 tháng 4 2019 lúc 21:25

Có: A=\(\frac{x^3-x^2-10x-8}{x^3-4x^2+5x-20}\)

A=\(\frac{\left(x^3-4x^2\right)+\left(3x^2-10x-8\right)}{x^2\left(x-4\right)+5\left(x-4\right)}\)

A=\(\frac{x^2\left(x-4\right)+\left(3x^2-12x+2x-8\right)}{\left(x^2+5\right)\left(x-4\right)}\)

A=\(\frac{x^2\left(x-4\right)+3x\left(x-4\right)+2\left(x-4\right)}{\left(x^2+5\right)\left(x-4\right)}\) ĐKXĐ:\(x\ne4\)

A=\(\frac{\left(x^2+3x+2\right)\left(x-4\right)}{\left(x^2+5\right)\left(x-4\right)}\) A=\(\frac{\left(x^2+x+2x+2\right)\left(x-4\right)}{\left(x^2+5\right)\left(x-4\right)}\) A=\(\frac{\left[x\left(x+1\right)+2\left(x+1\right)\right]\left(x-4\right)}{\left(x^2+5\right)\left(x-4\right)}\) A=\(\frac{\left(x+1\right)\left(x+2\right)\left(x-4\right)}{\left(x^2+5\right)\left(x-4\right)}\) A=\(\frac{\left(x+1\right)\left(x+2\right)}{x^2+5}\)

Vậy A=\(\frac{\left(x+1\right)\left(x+2\right)}{x^2+5}\)với \(x\ne4\)

Bình luận (0)
LL
12 tháng 4 2019 lúc 21:30

b) Có A=\(\frac{\left(x+1\right)\left(x+2\right)}{x^2+5}\text{với x}\ne4\)

A=0⇔\(\frac{\left(x+1\right)\left(x+2\right)}{x^2+5}=0\)

⇔(x+1)(x+2)=0 (vì \(x^2+5\ne0\))

\(\left[{}\begin{matrix}x+1=0\\x+2=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)(Thoả mãn ĐKXĐ)

Vậy với x=1 hoặc x=2 thì A=0

Bình luận (0)
HB
Xem chi tiết
NT
25 tháng 1 2021 lúc 22:35

Đề có sai không bạn?

Bình luận (0)
HC
Xem chi tiết
MA
Xem chi tiết
NT
29 tháng 6 2023 lúc 9:26

a: |x-1|=3

=>x-1=3 hoặc x-1=-3

=>x=-2(nhận) hoặc x=4(loại)

Khi x=-2 thì \(A=\dfrac{4+4}{-2-4}=\dfrac{8}{-6}=\dfrac{-4}{3}\)

b: ĐKXĐ: x<>4; x<>-4

\(B=\dfrac{-\left(x+4\right)}{x-4}+\dfrac{x-4}{x+4}-\dfrac{4x^2}{\left(x-4\right)\left(x+4\right)}\)

\(=\dfrac{-x^2-8x-16+x^2-8x+16-4x^2}{\left(x-4\right)\left(x+4\right)}=\dfrac{-4x^2-16x}{\left(x-4\right)\left(x+4\right)}\)

=-4x/x-4

c: A+B

=-4x/x-4+x^2+4/x-4

=(x-2)^2/(x-4)
A+B>0

=>x-4>0

=>x>4

Bình luận (0)
NT
Xem chi tiết