MA

Cho 2 biểu thức A = \(\dfrac{x^2+4}{x-4}\)và B = \(\dfrac{4+x}{4-x}-\dfrac{4-x}{4+x}+\dfrac{4x^2}{16-x^2}\)

a. Tính giá trị của A khi \(\left|x-1\right|\)= 3 

b. Tìm điều kiện xác định và rút gọn biểu thức B

c. Tìm x để A + B > 0

NT
29 tháng 6 2023 lúc 9:26

a: |x-1|=3

=>x-1=3 hoặc x-1=-3

=>x=-2(nhận) hoặc x=4(loại)

Khi x=-2 thì \(A=\dfrac{4+4}{-2-4}=\dfrac{8}{-6}=\dfrac{-4}{3}\)

b: ĐKXĐ: x<>4; x<>-4

\(B=\dfrac{-\left(x+4\right)}{x-4}+\dfrac{x-4}{x+4}-\dfrac{4x^2}{\left(x-4\right)\left(x+4\right)}\)

\(=\dfrac{-x^2-8x-16+x^2-8x+16-4x^2}{\left(x-4\right)\left(x+4\right)}=\dfrac{-4x^2-16x}{\left(x-4\right)\left(x+4\right)}\)

=-4x/x-4

c: A+B

=-4x/x-4+x^2+4/x-4

=(x-2)^2/(x-4)
A+B>0

=>x-4>0

=>x>4

Bình luận (0)

Các câu hỏi tương tự
CT
Xem chi tiết
KD
Xem chi tiết
TL
Xem chi tiết
NL
Xem chi tiết
NC
Xem chi tiết
VN
Xem chi tiết
NL
Xem chi tiết
TL
Xem chi tiết
DN
Xem chi tiết